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RESUMO

Com a crescente popularidade de processos de manufatura aditiva, otimizacao to-
polégica se torna um topico relevante ao permitir estruturas mais fortes e mais leves. Ao
mesmo tempo que a dificuldade de manufatura das estruturas propostas é resolvida em
métodos aditivos, permanece a complexidade associada a geragao da solugao e o conse-
quente tempo computacional. Este trabalho explora inteligéncia artificial como solucao do
problema apresentado, ao permitir a geragao instantanea de estruturas. Foi adotada uma
metodologia baseada em redes generativas adversarias (GANs) utilizando softwares open
source para construcao do dataset de treino e para treinamento da rede. Como resultado,
obteve-se uma rede capaz de gerar solugoes instantaneas e com qualidade satisfatoria para
problemas de otimizacao topolégica. Como contraponto, foi adotado um escopo reduzido
no que diz a geometrias de estrutura inicial e condi¢oes de contorno, sendo um préximo
passo explorar a solugao destes casos.

Palavras-Chave — GAN, otimizagao topologica, MEF.



ABSTRACT

As additive manufacturing grows in popularity, topology optimization becomes a re-
levant process as it enables the design of lighter and more rigid structures. At the same
time the difficulty to manufacture resulting structures is solved through additive methods,
there is still the complexity associated with the generation of the solution and resulting
high computational time. The presented work explores artificial intelligence as a solution
to this problem, allowing for the instant generation of structures. The proposed metho-
dology is based on generative adversarial networks (GANSs) using open source softwares
to create the dataset necessary for training and the training of the network. As a result,
the network has been observed as capable of generating instant solutions with satisfactory
quality to the proposed topology optimization problem. However, a reduced scope has
been adopted regarding the geometry of the initial structure and the boundary conditions.
A next step would be to explore the cases not considered in more detail.

Keywords — GAN, topology optimization, FEM.



10

11

12

13

14

15

16

17

18

19

20

21

LISTA DE FIGURAS

Qatar National Convention Center . . . . . . . .. ... .. ... ..... 17
Vigas classicas em OT . . . . . . . . .. .. 18
Comparacao de modelos utilizando MBB . . . . . . ... ... ... . ... 18
Geometria com tabuleiro de xadrez . . . . . .. ... 19

Evolugao da estrutura otimizada ao longo das 40 iteracoes gerada com a

biblioteca em Python TopOpt . . . . . . .. .. ... ... ... ... ... 20
Encoder da arquitetura . . . . . . .. ... L 22
Decoder da arquitetura . . . . . . . . . ... 22
Resultados da rede cGAN . . . . . .. . .. . 23
Diagrama representando uma GAN . . . . . . . .. ... ... .. 23
Diagrama representando uma cGAN . . . . . ... ... L. 24

Estrutura exemplo antes e apds otimizagao topoldgica. Carregamento in-

dicado por setas em vermelho . . . . . ... ..o 26

Trés categorias de otimizagao de estruturas. a) Otimizacao de dimensiona-

mento de treliga, b) Otimizagao de foormaec) OT . . . . . .. ... .. .. 30
Fluxograma para implementagao computacional de OT . . . . . . . .. .. 35
Imagem exemplo do dataset . . . . . . . .. ... L. 37
Imagem exemplo do dataset . . . . . . . .. ... L. 38
Imagem exemplo do dataset . . . . . . .. ... .. ... .. ... ... 38
Demonstracao do fluxo de informagoes de uma GAN . . . . . ... .. .. 40
Demonstracao do fluxo de informagoes de uma cGAN . . . . . ... .. .. 42
Operacao de convolugao . . . . . . . . . ... .. 43
Linearizagao . . . . . . . . . .. 45



22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Sigmoide . . . . ..o 46
Fluxograma no Tensorflow . . . . . .. .. ... .. ... ... ... ..., 50
Canal darede . . . . . . . . . . .. 50
Canais de entrada e canais condicionais darede . . . . . .. .. ... ... 51
Modelodarede . . . . . . . . . .. 53
Bloco SE . . . . . . 54
Camadas da geradora . . . . . . . . .. ..o )
Camadas da discriminadora . . . . . . . . . .. ... L 56

Representagao de quatro canais condicionais (diregao, sentido e posi¢ao dos

trés carregamentos, e os estados de tensoes de von Mises) darede . . . . . 60
Variacao das fungoes de perda ao longo de 500 épocas e batch size igual a 64 61
Variacao das funcoes de perda ao longo de 200 épocas e batch size igual a 8 63

Variacao das funcoes de perda ao longo de 200 épocas e batch size igual a

Evolugao da geometria obtida a partir da geradora ao longo de 200 épocas 65
Variacao das funcgoes de erro ao longo de 200 épocas e batch size igual a 64 66

Representagao de quatro canais condicionais (dire¢ao, sentido e posigao
dos trés carregamentos, e os estados de tensoes de von Mises) do primeiro

conjunto para teste . . . ... L Lo 67

Representagdo de quatro canais condicionais (dire¢do, sentido e posicao
dos trés carregamentos, e os estados de tensdes de von Mises) do segundo

conjunto para teste . . . . . . ... 67

Resultado com maior correlacao, para 1° treinamento com 500 épocas, com

a geometria real do primeiro conjunto para teste . . . . . .. . ... ... 68

Resultado com menor correlacao, para 1° treinamento com 500 épocas, com

a geometria real do segundo conjunto para teste . . . . . .. ... ... 68

Resultado com maior correlacao, para 1° treinamento com 200 épocas, com

a geometria real do primeiro conjunto para teste . . . . . .. ... ... 68



42

43

44

45

Resultado com menor correlacao, para 1° treinamento com 200 épocas, com

a geometria real do segundo conjunto para teste . . . . . ... ... L.
Funcoes de erro com relacao ao teste . . . . . . . ... ...

Geometrias otimizadas (dado falso) pela rede com maior correlagao com a
geometria do dataset (dado verdadeiro), sendo uma geometria selecionada

em cada um dos 6 mini batches para teste . . . . . . ... ... ... ...

Geometrias otimizadas (dado falso) pela rede com menor correla¢ao com a
geometria do dataset (dado verdadeiro), sendo uma geometria selecionada

em cada um dos 6 mini batches para teste . . . . . . .. ... ... .. ..



SUMARIO

Parte I: INTRODUCAO

1 Descricao do tema
1.1 Apresentacao do problema . . . . . . . ... ... ... L.
1.2 Motivacao . . . . . . . .

2 Estado da arte
2.1 Metodologias Tradicionais . . . . . . . . .. . ... ... ... .......
2.2 Metologias Modernas: OT com [A . . . . . . ... ... ... ... .....
2.3 GANsecGANs . . . . .
3 Definicoes de projeto
3.1 Objetivos . . . . . ..
3.2 Metodologia adotada . . . . . . .. .. Lo
3.2.1 Rede neural artificial . . . . . . ... ...
3.2.2 Criagao do dataset . . . . . . . . .
323 ImputdaRede. . .. ... ... . ... .. ... .
324 Outputdarede . . ... .. .. . ...
3.3 Requisitos de projeto . . . . . . ..
3.4 Perspectivas . . . . ...

Parte II: DESENVOLVIMENTO

4 Embasamento tedrico de OT
4.1 Definicao de OT . . . . . . . . ..

4.2 Modelagem . . . . ...

15

16

16

17

19

19

21

23

25

25

25

25

25

27

27

27

27

28

29



4.3 Parametrizagdo . . . . . . . . ..o 30
4.4 Critérios para otimizagao . . . . . . . . . .. .. 31
4.5 SIMP (Solid Isotropic Material with Penalization) . . . . . .. .. ... .. 31
4.6 Implementacao computacional . . . . . . . ... ..o 32
4.7 Simplificagoes . . . . ... 32
4.8 Anadlise de sensibilidade . . . . . . . ... oo 33
4.9 MMA (Method of Moving Asymptote) . . . . . . . ... ... ... .... 33
4.10 Topopt . . . . . . . e 33
4.11 Filtros e consideragoes . . . . . . . . . ... 33
4.12 Fluxograma . . . . . . . . . ... 34
Dataset 36
5.1 Construcao do Dataset . . . . . . . . . . .. 36

5.1.1 Estrutura de partida . . . . . . ... ... ... ... ... . ... 36

5.1.2 Parametros . . . . ... 37
5.2 Dataset em NUMETOS . . . . . . . . v v vt e 37
5.3 Exemplos . . . ... 37
Embasamento tedrico de GAN 39
6.1 Redes adversarias . . . . . . . . .. 39
6.2 Convergéncia . . . . . . . . ... 40
6.3 Implementacao . . . . . . . .. . 41
6.4 cGAN . . 41
6.5 Camadas . . . . . . . . . L 42

6.5.1 Convolugao . . . . . . . .. 42

6.5.2 Deconvolucao . . . . . . .. .. 43

6.5.3 Normalizacao . . . . . . . . .. .. Lo 43
6.6 Hiperparametros . . . . . . . . . . ... 43



6.6.1

6.6.2

6.6.3

6.6.4

6.6.5

6.7

6.7.1

6.7.2

6.8

6.8.2

6.8.3

6.9 Funcoes de custo

Funcoes de ativacao

Filtros

Stride

Padding
Learning rate (Ir) . . . . . . . . ... ...
Batch size . . . . ..o

Linearizacgao

ReLU e LReLU . . . . . . . .

MSE

VFAE

7 Arquitetura da rede
7.1 Tensorflow . . . . . . . .
T2 Setup. . . . . .
7.3 Modelo. . . . . .
T4 Geradora. . . . . ...
7.5 Discriminadora . . . . . ... Lo
7.6 Funcao objetivo . . . . . . . ..

8 Treinamento e validacao da rede

8.1 Treinamento

8.2 Validacao

9 Resultados

49

49

50

52

o4

95

56

57

57

57

59



9.1 Treinamento . . . . . . . . . L 59

9.1.1 Epocas- 12 e 22 treinamento . . . . . . ... 60

9.1.2  Batchsize - 3% e 4° treinamentos . . . . . . ... ... L. 62

9.1.3 Evolucao do treinamento . . . . . . . . ... L 65

9.2 Validagao . . . . . . . . 65
9.3 Testes . . . . . . e 66
9.3.1 Geometrias geradas . . . . . .. ..o 67

9.3.2 Funcoesdeerro . . . . . .. ... 69

10 Discussoes 70
10.1 Atendimento a requisitos . . . . . . . ..o 70
10.2 Geometrias geradas . . . . . . .. ..o 71
Parte ITI: CONCLUSAO 73
11 Objetivos alcangados 74
12 Proximos passos 75
Referéncias 76
Apéndice A — Parametros do setup 79

Apéndice B — Geometrias 80



PARTE 1

INTRODUCAO



16

1 DESCRICAO DO TEMA

1.1 Apresentacao do problema

Um projeto de engenharia mecanica, por exemplo, de estruturas, pecas, ferramentas,
apoios e suportes, envolve parametros que satisfazem requisitos de projeto sob alguns
aspectos como propriedades do material, fracao de volume e arquitetura. KEsse tltimo
aspecto necessita de um maior aprofundamento, dado que nao envolve somente o layout
correspondente a distribuicao do espaco com menor massa sob determinado dominio,
mas também o que a distribuicao altera: vibracgoes, dinamica, acustica, eletrostatica e

magnetismo, resisténcia mecanica, aerodinamica, condutividade elétrica e térmica [1].

Para tanto, o trabalho de [2] deu inicio, em 1988, & otimizacao topoldgica (OT) apli-
cada a um material homogéneo com pequenos furos obtendo como resultado uma estrutura
que suporta carregamentos previstos além de outros requisitos de projeto. Conforme de-
finigdo contida em [3], OT é uma metodologia que propoe uma distribuigdo de material
dentro de um dominio numa solucao 6tima, assim, partindo da dimensao do dominio dado
pelo requisito de projeto, busca-se atingir uma forma 6tima com ntimero e localizacao de

furos no layout.

Com isso, OT pode ser utilizado para resolver problemas dinamicos de vibragoes,
restrigoes de tensoes, de conformagao [3], microestrutura para manufatura aditiva e seus
mecanismos [4], condugao de calor [5], materiais especiais como piezoelétricos [6], implan-
tes ortopédicos [7], e até mesmo projeto de espagos que comportam méaquinas de miltiplos
eixos [8], além de estruturas para a industria automobilistica e aerondutica [9] e [10]. OT
também pode ser uma solucao para sustentabilidade ambiental, ja que a estrutura fi-
nal utiliza menos matérias-primas [11] como a constru¢ao do Qatar National Convention

Center em Doha, visto na Figura 1.
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Figura 1: Qatar National Convention Center. Figura extraida de
https://www.qnce.qa/about-qnee/gallery /qnee-venuesgallery-54 .

OT também pode ser combinada ao Método de Elementos Finitos (MEF) que ma-
ximiza ou minimiza uma funcao objetivo a partir de um dominio discretizado por um
numero finito de elementos por meio de software como SolidWorks, Abaqus e Ansys.
Mesmo com essa combinagao, o custo computacional empregado ainda é elevado, exi-
gindo tempo que aumenta com a diminui¢ao do tamanho do elemento da malha e com a

complexidade da geometria, material e condigoes de contorno.

1.2 Motivacao

Dadas as inumeras aplicacoes como as citadas acima, busca-se desenvolver métodos
mais eficientes que apresentem estruturas préximas aos métodos tradicionais de OT.
Para tanto, aplicam-se conceitos de Aprendizado de Maquinas (AM) em OT, isto é,
desenvolvem-se redes neurais artificias (RNA) que permitam o aprendizado de um cédigo-
fonte baseado em um dataset para gerar uma solugao étima. Assim, o escopo de aplicagao
de OT nao fica tao limitado ao custo computacional, adicionando um método para OT

por meio de RNAs.

Um dos pontos de partida para o estudo é observar a conhecida viga Messerschmitt-
Bolkow-Blohm (MBB) mostrada na Figura 2a. A viga MBB é bi-apoiada, com carga
concentrada no centro. A simetria é definida pelas condi¢oes de contorno aplicada no lado
esquerdo da viga. A Figura 2b apresenta outra geometria tradicionalmente utilizada em
OT, de uma viga engastada na extremidade esquerda e livre na direita. Na extremidade

livre é aplicado um carregamento concentrado.

A viga foi analisada foi analisada em [12] por diversos métodos de OT. Os resultados
obtidos pelos autores, em termos de geometria e tempo de processamento, sao apresenta-

dos na Figura 3 com dominio de 180x60.
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(a) Viga MBB (b) Viga engastada

Figura 2: Vigas classicas em OT. Figuras extraidas de [12].

Solution Time

TOSSE 2.3 sec

5.1 =zec

TOPSR

BES()

Lewvel Sot 5h sec

Figura 3: Comparagao de modelos utilizando MBB. Extraida de [12].

Portanto, ao apresentar uma OT com a utilizacao de recursos computacionais mais
acessiveis, pode-se dispensar o uso de licencas de software pago. Assim, tal OT pode ser
aplicada a produc¢ao nao-padronizada na indtstria 4.0, em especial, na manufatura aditiva,
podendo-se obter qualquer estrutura a partir de desenvolvimento de layouts diferentes com
fornecimento apenas de requisitos de projeto como dominio, condi¢oes de contorno, fracao

de volume e carregamento.
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2 ESTADO DA ARTE

2.1 Metodologias Tradicionais

Nesta secao, sao apresentadas solucoes tradicionais para o problema de OT. Em geral,
o objetivo final destas solucoes é a obtencao de uma matriz que pode ser preenchida por
valores bindrios (0-1) ou continuos, indicando a presenca de material em cada elemento
da matriz. Uma simplificacao possivel é a adogcao de um modelo tabuleiro de xadrez.
Neste caso, os valores da matriz podem ser apenas 0 ou 1, de modo binario, indicando a

presenca ou nao de material.

Assim, geometrias, que apresentam regioes predominantemente com tabuleiro de xa-
drez ou escala de cinza, revelam instabilidade numérica do modelo como pode ser visua-

lizado pela Figura 4.

Figura 4: Geometria com tabuleiro de xadrez. Figura extraida de [13]

Uma solucao mais sofisticada pode ser obtida ao usar um fator de penalidade p perten-
cente ao modelo de densidades SIMP (Solid Isotropic Material with Penalization) mos-
trado em [3]. SIMP apresenta uma fungdo continua para descrever a distribuicao de
material com valores de densidade variando de 0 a 1 controlados pelo fator p. No entanto,
o resultado apresenta um layout em escala de cinza que identifica a densidade do elemento

em vez da presenca de material.

Uma proposta de OT foi implementada por [14] que otimiza visando uma homoge-
nizacao da estrutura, a partir da aplicacao de um filtro de sensibilidade sobre o resultado

que possui tons de cinza. Tal aplicacdo aumenta o custo computacional da OT.
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Outros métodos também aplicaveis sao ESO (Evolutionary Structural Optimization) e
BESO (Bi-direcional Evolutionary Structural Optimization), sendo o dltimo uma evolucao
do primeiro. ESO é um método baseado em remover, gradualmente, material da malha
apresentando uma topologia discreta. Assim, ESO parte da hipdtese de que pequenas
alteragoes na topologia causam apenas efeitos locais relevantes para a estrutura [15]. Ja
BESO é capaz de remover e, simultaneamente, adicionar material, dado significado ao

termo bidirecional do método.

Assim, foram implementados cédigos-fonte utilizando esses métodos, por exemplo com
o SIMP. Em [16], foi proposto um cédigo de 99 linhas para otimizagao topolédgica 2D que
inclui otimizador e rotina de MEF. O mesmo autor em [17] ainda modifica o método

SIMP, incluindo uma rigidez minima para evitar singularidade.

Em seguida, o cédigo foi aprimorado por [18] por meio do c6digo de 88 linhas (Top88),
utilizado para gerar datasets de alguns dos artigos do estado da arte (como em [19]).
Top88 é um codigo-fonte aberto e implementado no MATLAB, tendo uma adaptacao para
o Python. Assim, os autores do presente trabalho partiram da adaptacao, denominada
TopOpt!, para gerar as figuras da ilustracido 5. No exemplo, é possivel observar as 40

iteracoes obtidas em no processo da estrutura inicial até a estrutura final otimizada.

0 20 40 60 80 100 120 140 160

Figura 5: Evolugao da estrutura otimizada ao longo das 40 iteracoes gerada com a bibli-
oteca em Python TopOpt. Ilustragao de fonte dos proprios autores.

Top 88 apresenta tanto o filtro de sensibilidade quanto um filtro de densidade adicional
para que as densidades filtradas possuam coeréncia fisica [20]. Esta adi¢ao permite evitar

estruturas com trechos nao suportados ou outras variagoes impossiveis na pratica.

No trabalho [18] os autores compararam os tempos de processamento para os c6digos
Top88 e Top99, mostrando o primeiro como mais rapido que o segundo. Além disso, Top88

mostrou performance semelhante a outros métodos que aplicam filtros para geometrias

thttps:/ /www.topopt.mek.dtu.dk /apps-and-software /topology-optimization-codes-written-in-python
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mais complexas.

2.2 Metologias Modernas: OT com TA

Dentre as diferentes técnicas de OT e aprendizado de maquina, comumente se utiliza
aprendizado profundo (Deep Learning) com redes neurais convolucionais (RNCs). A

geracao de dados ¢ feita em andlise de elementos finitos e método método SIMP.

O artigo pioneiro [21], de 2017, reportou OT utilizando RNC com sucesso em reduzir
o custo computacional. A rede utilizada pelos autores foi treinada com estruturas de
malha grosseira produzidas via MEF, mas que puderam ensinar a rede a gerar solugoes
mais refinadas. O modelo RNC aplicado tem como entrada a estrutura intermediaria ja

otimizada pelo SIMP e como saida a estrutura sem os tons de cinza da entrada.

No ano seguinte, o artigo [22] propde uma OT sem nenhuma iteragao, utilizando rede

adversdria generativa (GAN, do inglés Generative Adversarial Network).

Alternativamente, no trabalho [23], em 2019, os autores propuseram um modelo de
otimizacao que permite especificar um ponto sob o qual aplica-se uma forca externa bem
como sua posicao, direcao e volume final da estrutura a ser otimizada. Para atingir este
objetivo, o modelo foi composto por duas redes: uma RNC e uma GAN. A primeira foi
treinada com dataset produzido por Top88 e resolucao 32x32, permitindo uma primeira
solucao. A segunda foi treinada com os dados da primeira de modo a refinar a solugao de

entrada e obter uma maior resolucao final.

O trabalho apresentado em [19] utiliza o Top88 para gerar estruturas de 32x32 elemen-
tos ao variar condi¢oes de contorno como area, fracao de volume, distribuicao e valor do
carregamento. A arquitetura da rede foi construida com encoder e decoder demonstrados
nas Figuras 6 e 7. Dentre as operagoes utilizadas se destacam BN (batch normalization),
convolugao (ReLu e Sigmoid), SPADE (Spatially Adaptive Denormalization), max pooling
(2x2) e upsampling (2x2). O trabalho atingiu tempo computacional menor que o Top88

com uma matriz de 32x32.

No artigo [24], os autores desenvolveram trés modelos de RNC, onde o primeiro assume
material elastico linear e pequenas deformacoes e o segundo inclui grandes deformagoes.
O terceiro apresenta uma resposta em tempo real. Cada modelo utiliza o SIMP com
parametro p igual a 3, convergindo para uma resposta intermedidria com densidades
binarias entre 0 e 1. Adicionalmente, o pacote de otimizacao TOSCA é utilizado pelo

codigo-fonte [25] para gerar o dataset, atribuindo as condigées iniciais como fra¢ao de
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Figura 6: Encoder da arquitetura. Figura extraida de [19]
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Figura 7: Decoder da arquitetura. Figura extraida de [19].

volume, direcao do carregamento e ponto de aplicacao. O dataset gerado contém 15 mil

pares de imagens 32x32.

Este dataset serve de base para a RNC do trabalho [24]. A RNC do mesmo trabalho
apresenta como entrada 5 matrizes de 32x32 e 33x33 com 1s e 0Os correspondendo aos
noés onde sao aplicados os carregamentos e condigoes de contorno. Jé na saida, a RNC
apresenta uma matriz com valores entre 0 e 1 correspondendo as densidades do layout
6timo obtido. A arquitetura da RNC é baseada na ResUnet, que combina a renomada
U-net com rede neural residual. Comparando com o trabalho [23], os resultados [24]
obtidos em menor tempo sao melhores, pois nao apresentam descontinuidades nem escala

de cinza.
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Figura 8: Resultados da rede cGAN. Figura extraida de [26].

2.3 GANs e cGANs

Explorando inicialmente uma GAN, verifica-se que a GAN utiliza dois modelos que
competem entre si para gerar o resultado final a partir do modelo generativo G e do
modelo discriminativo D. O gerador G objetiva aprender uma funcao de densidade que
modela os dados de treino do dataset. Ja o discriminador D objetiva diferenciar se a
entrada é advinda do dados de treino do dataset original (real data) ou se a entrada é

advinda dos dados modelados por G (fake data) como ilustrado na Figura 9.

yr~pdum(y)

Dataset: Real Image

Real

D — -~ Loss
Z*[)Z(Z) YQ:G(Z) Fake

Bl 7

Fake Image

Figura 9: Diagrama representando uma GAN. Figura extraida de [26].
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Com isso, conforme mostrado na Figura 10, a cGAN é condicionada a uma entrada
adicional, ou seja, além das entradas advindas do gerador G e do dataset original, o
discriminador D também possui a mesma entrada do gerador G, assim, diminuindo o erro

do discernimento entre dadosreal ou dados fake.

_ G Fake Structure
G(x)
Real
Real Structure D Loss
Fake
X y

SIMP Data
Structure

Figura 10: Diagrama representando uma ¢GAN. Figura extraida de [26].

Nesse sentido, as entradas comuns do gerador G e discriminador D empregados por [26]
sao: dominio, fragdo de volume, condigbes de contorno e carregamento. A Figura 10
também mostra duas entradas adicionais que contribuem para resultado final: mapea-

mentos de tensoes de von Mises e de energia de deformacao.
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3 DEFINICOES DE PROJETO

3.1 Objetivos

O objetivo deste trabalho é gerar, por A, uma geometria otimizada de uma viga 2D
bi-apoiada nas extremidades, dados trés carregamentos concentrados posicao, direcao e

sentido aleatorios.

Para tanto, a entrada da rede é um conjunto de dados que identifica, no espaco 2D
da viga, os carregamentos concentrados, a fracao de volume desejada apds otimizacao e o
estados de tensoes da geometria inicial. A saida da rede é a geometria topologicamente
otimizada. Os resultados obtidos pela rede serao validados através do software Abaqus,

que faz otimizacao topoldgica.

3.2 Metodologia adotada

3.2.1 Rede neural artificial

Para o presente trabalho, utilizaremos redes adversarias generativas ou GANs, dentro
do pacote Tensorflow do Python. Mais especificamente, abordaremos uma cGAN sendo

uma GAN com canais condicionais na entrada.

3.2.2 Criacao do dataset

A rede neural é uma técnica de aprendizado supervisionado, isto é, a rede aprende
através de exemplos rotulados. Portanto, ¢ essencial a geragao de um dataset, composto
dos dados de input e output para treinamento da rede. O processo de criacao da rede para
solugao do problema depende nao sé do desenvolvimento da arquitetura da mesma, mas
também de um dataset para treino. O dataset é composto por diferentes casos iniciais de
otimizacao topoldgica e uma solucao obtida pelo pacote Topopt do Python. Destaca-se

que, por se tratar de uma estrutura com geometria e condigoes de contorno fixas, a analise
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estrutural por um software particularizado para esse tipo de problema, como é o caso do

pacote Topopt, tem um desempenho melhor que um software comercial como Abaqus.

Neste trabalho, o conjunto de casos parte sempre de um mesmo dominio base de
dimensoes 64x128 e sao variados os carregamentos fim de gerar diferentes solugoes. Assim,
¢ possivel treinar a rede ao associar cada caso de entrada com a geometria otimizada

esperada.

A fim de variar as condigoes iniciais trabalharemos com um script em Python 3 para
geracao de combinagoes aleatérias, gerando variacoes dos trés carregamentos concentrados

de mesma intensidade a partir de:

e posicao: uma dentre as posig¢oes dos 8192 elementos da malha, variando x entre 0 e

127 e variando y entre 0 e 63;
e direcao: aplicagao do carregamento em X (igual a 0) ou em Y (igual a 1); e

e sentido: positivo (igual a 1) ou negativo (igual a -1)

variando posigao, diregao e sentido de 3 carregamentos concentrados de mesma intensi-

dade.

O script fornece como saida 8192 (valor de 64 multiplicado por 128) valores entre 0-1,
que representam a porcentagem proporcional de material em cada pixel da malha. Como
pés-processamento, esses valores sao transformados em escala de cinza e a nova geometria
otimizada é plotada. Além disso, o estado de tensbes da estrutura otimizada também é
fornecido pelo script gerador do dataset. Porém, esses dados nao sao utilizados pela rede,

apenas para uma discussao posterior da viabilidade fisica da estrutura gerada.

A Figura 11 representa um caso exemplo da estrutura inicial e sua versao apds a

otimizacao topoldgica, assim como as tensoes de Von Misses associadas.

Stresses of Distributed Load Example

Von Mises Stress Antes da Otimizagéo Lo Von Mises Stress Depois da Otimizacao 1o
o
0.8 10 0.8
20
06 0.6
30
0.4 a0 0.4
50
02 0.2
60
o 20 40 60 80 100 120

00 o 20 40 60 80 100 120 0.0

o€ [0.00, 0.53] 0, € [0.00, 0.51]

Figura 11: Estrutura exemplo antes e apés otimizagao topoldgica. Carregamento indicado
por setas em vermelho. Fonte dos préprios autores.
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3.2.3 Input da Rede

A rede proposta neste trabalho visa resolver um problema fechado onde o dominio é
sempre o mesmo, variando apenas carregamentos. Sendo assim, a entrada da rede consiste
em um conjunto de parametros numéricos que descreve a posi¢ao dos carregamentos e a

sua direcao e sentido.

3.2.4 Output da rede

A rede tem como output uma matriz de resolugao 64x128 em escala de cinza indicando

a proporc¢ao de material no local respectivo.

3.3 Requisitos de projeto

Para presente trabalho, adotam-se os topicos como requisitos de projeto:

Topologia étima obtida por IA com erro menor de 5% em relacao a geometria ideal,

obtida por um software de elementos finitos;

Resolugao de entrada e saida: 64 (altura) x 128 (comprimento);

e Tempo maximo de geracao do dataset: 1 minuto por estrutura;

Dataset contendo no minimo 2.000 estruturas variando carregamento;

Acessibilidade: utilizacao de softwares somente de codigo aberto e livre; e

Saida da rede: menor que 30s por estrutura.

3.4 Perspectivas

Do presente trabalho, espera-se propor a arquitetura de uma GAN condicionada para
otimizacao topoldgica de uma viga bi-apoiada nas extremidades com trés cargas concen-

tradas e disponibilizar um dataset especifico de treinamento da rede.
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4 EMBASAMENTO TEORICO DE OT

Antes de tratar do dataset em si, aborda-se com maior propriedade a otimizacao
topoldgica, apontando os fundamentos do presente trabalho, em especial, para formagao
do dataset. Para isso, é tomado como referéncia o livro [27] tendo como autor Ole Sigmund,

sendo citado pelas referéncias do estado da arte.

4.1 Definicao de OT

OT parte de um problema aberto onde sao conhecidos carregamentos, condi¢oes de
apoio, volume da estrutura e, em alguns casos, distribuicao de densidade da estrutura.
Assim, o objetivo final é a definicao da forma e conectividade da estrutura que atenda

a0s requisitos.

Com isso em mente, mostra-se imprescindivel diferenciar OT da otimizacao de dimen-
sionamento e de forma. Como pode ser vista na Figura 12, a estrutura obtida por OT
se distancia dos demais resultados obtidos pelas outras otimizacgoes. Nota-se como dife-
renga marcante o fato de que a estrutura inicial para da OT possui dominio totalmente
preenchido, enquanto as demais otimizagoes ja apresentam indicios das features a serem

otimizadas na propria estrutura inicial.
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Figura 12: Trés categorias de otimizac¢ao de estruturas. a) Otimizagao de dimensiona-
mento de trelica, b) Otimizacao de forma e ¢) OT. Figura extraida de [27].

Assim, para cada estrutura bidimensional do dataset do presente trabalho, os atributos
conhecidos (input) s@o: dimensées do dominio, carregamentos concentrados, volume final

e condicoes de contorno.

4.2 Modelagem

A partir dos atributos conhecidos, realiza-se modelagem do problema em funcao de
certos objetivo e restrigao, ou seja, modelagem pela minimizacao do compliance ou maxi-
mizagao da rigidez global sobre o dominio sendo discretizado em elementos finitos. Com

isso, observam-se as seguintes equacoes de equilibrio para minimizagao do compliance c:

min ¢ = fTu
K(E)u = f
K= Zé\jzl K(Ee)

sendo u e f sao vetores de deslocamento e de carregamento, F. a rigidez de cada

elemento, K a matriz de rigidez global e N igual nimero de elementos da malha.

4.3 Parametrizacgao

Para uma estrutura com material isotropico, verifica-se quais elementos deveriam pos-
suir material e quais deveriam ser vazios, associando os elementos a uma renderizacao que
forma uma imagem pixelada com elementos com cores pretos e brancos, isto é, equivalente

a zero e um conforme equagoes abaixo.
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1 (material)

_ 0 _
Eijri = mEg;,, sendo m= .
0 Vaz10

Vmaterial S V

sendo o volume limite V fornecido inicialmente, E?

i1 © tensor de rigidez para o material

isotrépico.

4.4 Critérios para otimizacgao

Os métodos iterativos propoem atualizacao das varidveis em cada ponto indepen-
dentemente da atualizacao dos demais pontos a cada iteracao. Assim, é introduzido o
multiplicador lagrangiano A para as equagoes de equilibrio, obtendo a seguinte expressao

em que a densidade de energia de tensao é igual a A:

po(e)P~ Egij(u)en(u) = A
A partir disso, as densidades sao atualizadas da seguinte forma a cada iteracao K:

maz (1 — Q)pr, pmin e prB < max(1 — )k, Pmin
PK+1 = min(1 + Q) px, 1 se min(1+ Q)px, 1 < pr.BY- (4.1)

T] Z .
prB g caso contrario

sendo que By = A;(lpp(e)pflE?jkleij (ug)er(ug) que atinge valor unitario para um
6timo local, de modo que adiciona material quando Bg > 1 e retira material quando
Bk < 1; sendo valores tipicos para os controladores de iteragao ¢ e 7 iguais a 0,2 e 0,5,

respectivamente, para obter uma convergéncia mais rapidamente.

4.5 SIMP (Solid Isotropic Material with Penaliza-
tion)

O conhecido método SIMP para OT troca as varidveis inteiras por variaveis continuas
como a densidade para cada elemento da malha p entre 0 e 1, adicionando um fator de

penalizacao p maior do que 1. Assim, temos:
Eijule) = ple)’ By

sendo p para problemas bidimensionais



32

4

2
p 2 maa:{ 1—v? 1+4+v

sendo v o coeficiente de Poisson para o material com tensor de rigidez E?jkl, o que implica
valor de p igual a 3 para v =1/3 .

Adicionalmente, pode-se inserir uma densidade minima com p,,;, = 1072 para evitar

singularidades.

4.6 Implementacao computacional

Para isso, a sequéncia é adotada:

1. Pré processamento da geometria e carregamento:

e Estabelecimento do dominio;
e Definicao da estrutura inicial;
e Construcao da malha de elementos finitos no plano 2D com resolucao adequada;

e Definicao dos carregamentos.
2. Otimizacao:

e Distribuicao de material inicialmente homogénea;

e Anadlise de tensao por elementos finitos;

e Atualizacao das densidades da estrutura;

e [teracao da analise de tensao e atualizacao da densidade até a convergéncia
para a estrutura final otimizada.

3. Pés processamento:

e Interpretacao da distribuicao de material como uma representacao 6tima da

estrutura.

4.7 Simplificacoes

Dominio, intensidade de carregamento e propriedades do material sao parametros que
podem ser simplificados a fim de permitir uma interpretagao mais genérica dos resultados
e maior velocidade de processamento. No presente trabalho foi considerado dominio

retangular, elementos quadrados e carregamentos e propriedades unitarias no material.
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4.8 Analise de sensibilidade

Pode-se analisar a derivada parcial do compliance ¢ em funcao da densidade no nivel
de cada elemento, desprezando demais efeitos sobre outras variaveis que envolvem o des-

locamento u.

dc __ -1,,T
o = —PPL U K.u

A equacao acima mostra que a sensibilidade é negativa para todos os elementos,
confirmando que a adicao de material implica a diminui¢ao do compliance e aumento da

rigidez da estrutura.

4.9 MMA (Method of Moving Asymptote)

Tal método utilizado pelo pacote Topopt possui uma grande versatilidade para pro-
blemas de OT. MMA é um método de programacao matematica que funciona como uma
sequéncia de subproblemas préximos do problema de forma mais simples, sendo que os
subproblemas sao separaveis e convexos, baseados na sensibilidade da iteracao vigente. A
solucao do subproblema ¢ utilizada na proxima iteragao. Com isso, para implementagao

computacional, adiciona-se o célculo da sensibilidade no loop.

4.10 Topopt

MMA ¢ utilizado pelo Top88 e também pelo pacote Topopt que esta disponivel no link
1. O cédigo-fonte estd escrito em Python, o que torna-se atrativo para adaptaciao para
construcao do dataset do presente trabalho. Além disso, essa versao do Topopt apresenta
maior versatilidade com relagao ao niimero de carregamentos, podendo ser distribuido ou

concentrado, além de variar demais condig¢oes de contorno.

4.11 Filtros e consideracoes

Uma primeira consideracao se refere a malha em formato de tabuleiro de xadrez, alter-

nando diretamente entre a existéncia ou nao de material. Em uma segunda consideracao,

! https://github.com/zfergus/topopt
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verifica-se a dependéncia com o tamanho da malha, obtendo solugoes diferentes ao va-
riar o numero de elementos. Para nao depender do refinamento da malha, sao aplicados
filtros tanto para sensibilidade quanto para densidade. Os filtros de densidade limitam
grandes variacoes de densidade por meio de um parametro chamado raio de filtro r para
que a densidade em um elemento dependa também dos elementos vizinhos, suavizando a

imagem.

O formato de tabuleiro de xadrez tem seu padrao devidos a aproximagao por elemen-
tos finitos, principalmente quando a modelagem numérica que superestima a rigidez dos
elementos. Como ponto de partida, pode-se restringir a escala geométrica, especificando
uma largura d minima para partes com material e inclusao de vazios, o que equivale a
um filtro de uma janela circular para medir se a densidade é monotonica ou nao. Uma
segunda forma seria aplicar um filtro de sensibilidades, restringindo gradiente local, isto
é, a sensibilidade de um elemento especifico depende de uma média ponderada das sen-
sibilidades dos elementos de uma vizinhanca fixada ao elemento especifico. A aplicacao
destes filtros tem como resultado esperado evitar estruturar com trechos finos demais e

que possam nao representar na pratica uma solucao estavel.

4.12 Fluxograma

Por fim, diante dos topicos apresentados acima, obtém-se o seguinte fluxograma da

Figura 13.
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Figura 13: Fluxograma para implementacao computacional de OT. Figura adaptada de
[27]
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5 DATASET

5.1 Construcao do Dataset

O dataset foi construido utilizando como base, o cédigo aberto de otimizacao to-
poldgica em Python, a versao do Topopt apresentada no capitulo 4. O codigo-fonte foi
adaptado de modo a retirar funcionalidades nao desejadas para os fins deste trabalho e,
também, adicionar a geracao aleatoria de carregamentos. Como resultado, o tempo de

processamento foi reduzido e a velocidade de geracao do dataset foi aumentada.

O arquivo do dataset foi gerado no formato ”.csv”’onde cada linha é uma entrada do

dataset. Cada entrada apresenta como dados:

Nimero de elementos da viga (largura e comprimento)
e Posicao xy das 3 forcas aplicadas
e Direcao e sentido das 3 forgas aplicadas

e Tensao na estrutura nao otimizada

Densidade dos elementos da estrutura otimizada (resposta esperada)

e Tensao na estrutura otimizada (validagao da estrutura)

Nos topicos a seguir sera apresentado o processo implementado e a validagao das

estruturas geradas.

5.1.1 Estrutura de partida

Foi utilizado como base de partida uma viga bi-apoiada cujos pontos de apoio se
encontram nos cantos inferiores direito e esquerdo. Foi criada uma malha com dimensao

128x64 com elementos de quadrados.
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A fim de simplificar o problema, foram assumidos valores adimensionais unitarios para
comprimento, forca e modulo de elasticidade. O coeficiente de Poisson utilizado foi de
0,3.

5.1.2 Parametros

O tnico elemento nao definido na estrutura de partida foi o carregamento. Neste
caso, os parametros de posicao, direcao e sentido foram variados utilizando uma funcao

aleatoria.

Cada um dos 3 carregamentos associados teve sua posi¢ao variada entre qualquer
um dos 8192 nés do dominio (128x64), tendo como diregao aleatdria uma das 4 diregoes

cartesianas principais.

5.2 Dataset em numeros

O dataset foi gerado com um tempo médio de 5 segundos para processamento de cada
iteragao. Estima-se entao um tempo de aproximadamente 14 horas para gerar as 10000
entradas do dataset. Para o presente trabalho, foram suficientes 2000 estruturas para o

dataset ocupando 1,16 GB.

5.3 Exemplos

As imagens 14, 15 e 16 abaixo representam 3 exemplos de entrada do dataset. As
setas em vermelho indicam cada um dos 3 carregamentos na estrutura nao otimizada
(a esquerda) e na estrutura otimizada (a direita). As imagens também possuem um

mapeamento em cor das tensoes observadas.

Stresses of Distributed Load Example

Von Mises Stress Antes da Otimizacao 1.0 Von Mises Stress Depois da Otimizacao 1.0

0.8

0.6

04

0.2

40 60 80 0.0 0 20 40 60 80 100 120 0.0
a, € [0.00, 0.82] @, € [0.00, 1.00]

Figura 14: Imagem exemplo do dataset. Fonte dos préprios autores.
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Von Mises Stress Antes da Otimizagao 1.0

60 80 0.0
0y € [0.00, 0.48]

Von Mises Stress Depois da Otimizag&o

0 20 40 60 80 100 120
o, € [0.00, 0.81]

Figura 15: Imagem exemplo do dataset. Fonte dos préprios autores.

Stresses of Distributed Load Example
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‘Von Mises Stress Depois da Otimizacao
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Figura 16: Imagem exemplo do dataset. Fonte dos préprios autores.
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6 EMBASAMENTO TEORICO DE GAN

Para esta se¢@o, o presente trabalho se baseia nas referéncias [28] e [29] para o es-
tudo de GANs (Redes Adversarias Generativas). Modelos generativos sao apropriados
para tratamento de imagens, dado que pequenas mudancas de entrada da GAN, como
variacao da posicao do carregamento, implicam geometrias otimizadas diferentes. Assim,

um modelo generativo proveé respostas para uma multiplicidade de problemas.

A partir disso, GANs sao caracterizadas pela presenca de uma rede geradora e uma
rede discriminadora competindo entre si. A rede discriminadora aprende a distinguir
imagens reais de imagens falsas e a rede geradora aprende a produzir imagens falsas se-
melhantes as reais. Observando o aprendizado das duas redes adversarias, a competigao
entre elas é dada pela geradora tentando enganar a discriminadora com imagens falsas
cada vez mais parecidas com as reais, enquanto a discriminadora tenta acertar classifi-

cando as imagens como real ou falsa.

6.1 Redes adversarias

Primeiramente, destaca-se uma das redes que compoe uma GAN: a rede geradora G
que produz amostras segundo a fungao x = g(z;679), em que z representa um conjunto de
nimeros aleatérios (ruido) e 9, um conjunto de parametros da geradora. Paralelamente,
a rede discriminadora D, adversaria de G, tenta distinguir as amostras x provindas de G
(dado falso) e amostras provindas do dataset (dado real), produzindo valores de probabi-
lidade definidos por d(z; %) entre 0 e 1. Assim, um valor de probabilidade préximo de 1
corresponde a classificacao de x como dado real; e um valor de probabilidade proximo de

0 corresponde a classificagao de x como dado falso.

A partir desses valores de probabilidade, gera-se uma espécie de custo-beneficio como
sendo uma funcio v(69, %) para a discriminadora e —v(#9, #%) para a geradora. De forma
analoga a um jogo competitivo, as redes possuem resultados opostos: quando uma esta

proxima de acertar, significa que a outra esta errando. Assim, quando a geradora produz
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um dado ruim e distante do dataset, a discriminadora facilmente acerta que o dado gerado
é falso. Ao mesmo tempo, quando a geradora produz um dado proximo do dataset, a

discriminadora ird errar com maior probabilidade e acreditar que o dado falso é verdadeiro.

Ao final, obtém-se uma convergéencia do aprendizado transcrita pela equacao 6.1:

g* =arg min max v(g,d) , (6.1)
g9

em que, a geradora busca minimizar o valor de v, enquanto a discriminadora busca
maximiza-lo. Com uma forma padronizada para modelar o custo-beneficio v mostrado

por [28], temos a equagao 6.2:

v(eg’ ed) = Ex"/pdataset [lOgD(.IH + IE73"/pmodelo [1 - lOgD(.I)] (62)

em que, o valor esperado para x proveniente do dataset ¢ igual a 1, enquanto o valor

esperado para = proveniente da geradora é igual a 0.

A partir disso, o fluxo de dados ao longo de uma GAN pode ser demonstrado pela
Figura 17. O fluxo inicia-se, de modo paralelo, com entradas na discriminadora tanto
provindas de y (dataset) quanto de z passando por G. Por fim, a discriminadora proveé
um resultado D(y) para dados que julga serem de y e um resultado D(G(z)) para dados
que julga serem de G. A partir dos resultados aprendidos pela discriminadora, a geradora

aprende a gerar dados melhores.

GBI

Exemplos reais

r’ - H-\,-U»“-J- | —

aleatério Rede geradora
G(2)

Figura 17: Demonstracao do fluxo de informacgoes de uma GAN. Fonte dos préprios
autores.

6.2 Convergéncia

Apo6s treinamento da discriminadora e da geradora, a rede fornece apenas valores de

probabilidade iguais a 0,5, ou seja, o dado possui 50% de chance de ser falso e 0 mesmo de
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ser real, uma vez que a geradora treinada produz dados falsos idénticos aos dados reais.

Assim, a discriminadora torna-se incapaz de distinguir um dado falso de um dado real.

Alternativamente, se a geradora fornece somente dados ruins, distantes dos dados
reais, a discriminadora satura sabendo distinguir exatamente dado falso de real, de modo

que a geradora nao consegue mais aprender.

Para isso, ao invés de treinar a geradora para minimizar o termo log(1 — D(x)) da
equagao 6.2, a GAN pode aplicar uma funcao objetivo que maximize log(D(z)). Maiores
detalhes da funcao objetivo serao abordada no capitulo seguinte, mas veremos no préximo

topico um pseudocodigo para implementar o aprendizado da GAN.

6.3 Implementacao

Uma das formas de aumentar as chances de convergéncia é realizar o seguinte algo-
ritmo, que obtém um gradiente de aprendizado da geradora a partir de um gradiente

fornecido a discriminadora:
Para um nimero de iteracoes de treinamento, faca:
Para k passos, faca:
Selecione m amostras provindas de um ruido z;
Selecione m amostras provindas do dataset; e

Atualize a discriminadora com o gradiente igual a

m

ng% Z [logD(z") 4 log(1 — D(z"))] ; (6.3)

i=1
Selecione m amostras provindas de um ruido z; e

Atualize a geradora com o gradiente igual a

m

Vo, > [log(1 — D(=)))] (6.4)

6.4 cGAN

Como uma forma de contribuir para convergéncia de GANs, uma cGAN mostra-se

mais vantajosa ao utilizar informacoes do proprio dataset, ou seja, informacoes de dados



42

reais ao invés de utilizar niimeros aleatérios presentes no ruido z.

No trabalho de [26], inputs de construcao do dataset — condigoes de contorno, fragao
de volume, carregamentos — somados a campos fisicos (estados de tensoes de von Mises e
energias de deformagao) em cada elemento do dominio, formam sete matrizes que a cGAN
utiliza como entrada. Essas sete matrizes de dimensao equivalente a dimensao do dominio
correspondem aos canais condicionais da rede. Como ilustracao, comparativamente a
Figura 17, observa-se a Figura 18 em que um canal condicional, por exemplo, o canal de

estados de tensoes é adicionado a discriminadora e a geradora.

GEBERD

Exemplos reais

z

Dominio, CC e

carregamento H"\l-\l'u ‘J q e
aleatério Rede geradora

G(2) I

Figura 18: Demonstragao do fluxo de informacoes de uma c¢GAN. Fonte dos préprios
autores.

6.5 Camadas

Para isso, uma GAN é composta, tanto para a geradora como para a discriminadora,

por camadas de convolugao, normalizagao e linearizacao, vistas nos préximos topicos.

6.5.1 Convolucao

A operacao de convolugao corresponde a uma camada da rede que realiza a multi-
plicacao da entrada por um filtro seguindo um algoritmo especifico. Neste processo, o
filtro é sobreposto na matriz de entrada e sao executadas multiplicagoes sequenciais mo-
vendo o filtro ao longo da imagem de entrada. O objetivo desta camada é a extracao de
caracteristicas especificas da imagem, a depender do filtro (kernel) aplicado. A ilustragao
da Figura 19 demonstra como ¢ realizada a operacao de convolugao entre uma matriz de

entrada e o kernel resultando em uma matriz de saida.
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Imagem de entrada

Figura 19: Operacao de convolugao. Ilustracao de fonte dos préprios autores.

6.5.2 Deconvolucao

A camada de deconvolugao, como descrita por (Zeiler et al., 2010) em [30], constitui
um processo de reducao de ruido através da execucao da transposta do gradiente de uma

convolucao.

6.5.3 Normalizacao

A etapa de normalizacao aplica uma transformacao com objetivo de manter a saida
com média préxima de zero e desvio padrao préximo de 1. Esta camada é aplicada de
modo diferente durante o treinamento e a validagao. Durante o treinamento, a camada
normaliza a saida com base nas entradas atuais, enquanto na validagao a normalizacao é
feita com base em uma média moével tanto da média quanto do desvio padrao observados
durante o treinamento. Neste processo é pressuposto que as entradas no treinamento e

na validagao possuem distribuicoes estatisticas similares.

6.6 Hiperparametros

6.6.1 Filtros

Os filtros sao tensores a serem aplicados nas camadas de convolugao e deconvolugao.
O filtro é movido sobre a imagem de entrada executando uma operagao de multiplicacao
na area sobreposta a cada passo, sendo que o tamanho do passo ¢ igual ao valor de stride.
O conteudo do tensor depende do tipo de caracteristica que se deseja extrair. Um exemplo

de caracteristica é a presenca de linhas verticais ou horizontais na entrada.
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6.6.2 Stride

Stride é o passo entre cada aplicacao do filtro dentro de uma camada de convolucao,
indicando o nimero de colunas e linhas a serem movidos por vez. Normalmente, o valor é
igual na horizontal e na vertical. Por exemplo, a ilustracao 19 demonstra uma convolugao

com valor de stride igual 1.

6.6.3 Padding

Padding corresponde ao ntimero de pixels nulos adicionados na borda exterior do dado
de entrada. O objetivo do padding é permitir a aplicacao do filtro ao longo dos dados

também na borda da entrada.

6.6.4 Learning rate (Ir)

Nimero entre 0.0001 e 0.01 que multiplica o gradiente obtido pelas camadas do trei-
namento. Sendo assim, é responsavel por definir a velocidade de alteracao dos parametros
otimizados ao fixar seu limite superior e inferior apds o treinamento. O objetivo final do

Ir é evitar sobreajuste ou sobajustes no aprendizado.

6.6.5 Batch size

Numero de entradas fornecidas a rede por vez. Aumentar o batch size permite uma
maior velocidade de treinamento através de paralelizacao de atividades, porém podendo
ocasionar uma degradagao do resultado. A partir do batch size e do tamanho do dataset,
é possivel inferir o nimero de épocas necessario para o aprendizado, uma vez que cada

época representa um batch correspondendo a um dos lotes do dataset para treinamento.

6.7 Funcoes de ativacao

Como visto, muitas das operagoes sao lineares, porém as RNCs necessitam de nao-

linearidades para aprendizado mais generalizado a partir de funcoes de ativacao.

Assim uma fungao de ativagdo realiza uma transformagao nao-linear, atualizando
variaveis da rede de acordo com a entrada. Vale destacar a possibilidade de utilizacao de
mais de uma funcao de ativacao dado que ha vantagens e desvantagens em cada uma no

treino.
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6.7.1 Linearizacao

Utilizada para casos em que a rede necessita interpretar o resultado a partir de uma
transformacao linear da entrada. Por exemplo, no caso da saida da rede classificando
cada elemento do mini batch. A Figura 20 ilustra o gréafico da linearizagao em fungao da

entrada z conforme equacgao 6.5.

Figura 20: Linearizacao. Fonte dos préprios autores.

6.7.2 ReLU e LReLU

A funcao unidade linear retificada (ReLU) é presente na maioria das RNAs e torna
zero os valores negativos das entradas da funcao. Isto permite que apenas determinados
pontos da rede sejam ativados e tem como consequéncia a simplificacao da rede por tornar
a ativagao distribuida e eficiente. Assim, a Figura 21 ilustra o grafico da ReLLU em fungao

da entrada z, conforme equacao 6.6.

g(z) = max(0, 2) (6.6)

Figura 21: ReLU. Fonte dos préprios autores.
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Além da fungao ReLU, existe a fun¢do Leaky ReLU (LReLU) que substitui valores
negativos por fungoes afins, removendo gradientes zero. A abordagem da LReLLU é mais
efeciente do que a da ReLLU. A Figura 22 ilustra o grafico de uma LReLLU em fungao da
entrada z, observando que para valores negativos de z, a funcao LReLLU retorna um valor

diferente de zero, conforme equacao 6.7.

g(z) = max(0,1z, 2) (6.7)

Figura 22: LReLU. Fonte dos préprios autores.

6.7.3 Sigmoide

A funcao sigméide é dada pela equacao 6.8 e auxilia classificadores binarios uma vez
que retorna valores préximos de 0 ou préximos de 1. Observando a Figura 23 que ilustra
o grafico da sigmédide em fungao da entrada z, verificam-se valores préximos de 0 ou 1

para a maior parte dos valores de z.

Figura 23: Sigméide. Fonte dos préprios autores.
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6.8 Funcoes de erro

Como avaliagao da performance da rede, sao utilizados algumas fungoes de erro: erro
médio absoluto (MAE), erro médio quadrético (MSE) e erro absoluto da fra¢ao de volume

(VFAE).

Desse modo, para os calculos de MAE e MSE, sao comparados os valores y do target
(dado do dataset) com valores y encontrados pela rede. Da mesma forma, para o calculo
de VFAE, sao comparados os valores da fracao de volume V' F do dataset com valores VE

encontrados pela rede.

6.8.1 MAE

M
1 . .
MAE = — @ _ 7@ 6.9
i ;:1 |y v (6.9)

Para o presente trabalho, em que serao analisados elementos de uma malha, pode-se
tratar M como ntumero total de exemplos da amostra e N igual ao nimero de elementos

da malha. Com isso, tem-se que:

LS e e L
MAE = — |yWe — gte| — (6.10)
22 N
6.8.2 MSE
1ML .
MSE =+ > W — g (6.11)

=1

Analogamente, para o presente trabalho, tem-se que:

1 LY 1
MSE = — (e _ 7(0e) 12
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6.8.3 VFAE

Py N
VF -VF 1
VFAE = T, onde VF = N E Ye (613)

6.9 Funcoes de custo

As fungoes de custo, também chamadas de fungoes de perda (loss function), auxiliam
o treinamento da rede, de modo que quanto menor o valor retornado pela funcao de custo,

melhor sera a acuracia da rede treinada.

Um exemplo ¢é a entropia cruzada que relaciona a perda entre duas distribuigoes de
probabilidade. No caso de uma GAN, as distribui¢ées de probabilidade correspondem as
predigoes da rede discriminadora em detectar um dado falso ou um dado real. Outras

funcoes de custo aplicadas no presente trabalho serao detalhadas no capitulo seguinte.
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7 ARQUITETURA DA REDE

Tomando como base a cGAN elucidada em [26], o presente trabalho utilizou o dataset
desenvolvido e descrito no capitulo 5 para dados de treino, validacao e teste. Neste
capitulo sera dado destaque ao fluxo de informagoes ao longo da rede, desde a entrada até
a saida. Adicionalmente, o codigo-fonte utilizado no presente trabalho sera disponibilizado

em conjunto com o gerador do dataset no repositério em 1.

7.1 Tensorflow

Como sendo um dos principais pacotes de cédigo aberto para desenvolver e criar
modelos de Aprendizado de Méquina, o TensowFlow foi utilizado em combinacao com
a linguagem orientada a objetos Python. A partir disso, cria-se uma sessao capaz de
armazenar e atualizar varidveis da rede ao longo da execucao do modelo. Isso é possivel,
uma vez que o Tensorflow gera grafos com fluxo de dados que representam um estado

compartilhado bem com operagoes que alteram tal estado [31].

Inputs gerais como dataset e hiperparametros sao introduzidos no bloco de setup
antes da construcao do modelo ilustrado pela Figura 24. Em seguida, com os métodos
e objetos do modelo definidos, obtém-se as redes geradora e discriminadora combinadas
em fungoes objetivo. Assim com as redes adversarias definidas, o treino é iterado ao
longo de épocas, atualizando variaveis da funcao objetivo para obter uma convergéncia.
Apos uma avaliacao dessa convergéncia, o modelo é validado. Os checkpoints do modelo
correspondem as caracteristicas definidas ao longo do treino e podem ser aplicados a dados

de teste.

Thttps://github.com /kaioogawa/IA-para-OT



50

= Classe do Python: Sessioe do Tensorflow

Geradora,
modelo IModelo métodos Discriminadora e
Funcdes objetivo

Construcédo do Definicdo dos

Inicio das
épocas

Y

Avaliacdo do

Reaproveitamento validaco Treino

dos checkpoints treino

Figura 24: Fluxograma no Tensorflow. Fonte dos proprios autores.
7.2 Setup

Primeiramente, sao estabelecidos e fornecidos todos as informacgoes que o modelo
necessita para execucao da rede na sessao do Tensorflow. Essas informagoes sao elencadas
na tabela encontrada no Apéndice A. Os nomes das variaveis apresentadas ao longo do

capitulos sao fiéis as variaveis do codigo-fonte disponibilizado.

As variaveis relacionadas aos canais da rede — input_c_dim, output_c_dim, condi-
tion_dim e overlap_dim — foram introduzidas para organizacao dos dados provindos do

dataset.

A variavel input_c_dim, igual a 2, se refere aos dois canais de entrada que vao auxiliar
o treino da rede: canal com tensoes de von Mises (vim_stress) e canal com fra¢do de volume
(VF). Estes canais correspondem a matrizes com mesma dimensao do dominio (128x64)
e armazenam um valor em cada elemento da matriz. Para o presente trabalho, VF foi
mantido constante igual a 0,2. A Figura 25 ilustra o dominio da viga bi-apoiada nas
extremidades inferiores, de modo que cada elemento da matriz representada recebe um

valor referente aos dados do dataset.

vi 0

63

Figura 25: Canal da rede. Fonte dos préprios autores.
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Adicionalmente, repetindo os mesmos canais do input_c_dim conforme parametro over-
lap_dim igual 2, o parametro condition_dim, igual a 6, acrescenta quatro canais condici-
onais relativos aos dados em que o dataset foi baseado para obtencao das estruturas
otimizadas: condig¢oes de contorno (BC) e carregamentos concentrados. Como simpli-
ficacao, considerou-se as mesmas condi¢oes de contorno do dataset, formando um canal
para BC de dimensao 128x64. Com relacao aos canais para as forgas, os carregamentos fo-
ram separadas em matrizes de direcao, sentido e posicao, considerando forcas em posigoes
diferentes. Ou seja, um canal 128x64 armazena a posicao das trés forcas (loads_pos); um
segundo canal 128x64 para o sentido das trés forcas de acordo com o canal de posicoes
(loads_sent); e um terceiro canal 128x64 para a dire¢do das trés forgas de acordo com o

canal de posigoes (loads_dir).

Além disso, o output_c_dim se refere ao canal que possui a estrutura otimizada (out-
put_scrut) pertencente ao dataset, sendo uma matriz com mesma dimensao do dominio,
armazenando um valor [0-1] em cada elemento da matriz de dimensao 128x64. Resumi-

damente, a Figura 26 ilustra a intersec¢ao dos canais.

6 Canais condicionais |

4 canais de input do dataset

loads_pos
loads_dir

leads_sent

2 Canais de entrada

wm_strass

Figura 26: Canais de entrada e canais condicionais da rede. Fonte dos proprios autores.
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7.3 Modelo

A partir do Setup, o modelo é construido partindo do dataset formado pelo pacote
TopOpt para suprir os canais de entrada e canais condicionais da rede. Assim, obtém-se a
primeira variavel do modelo chamada real_data. Em seguida, real data fornece dados de
fragdo de volume (VF) e tensoes de von Mises (vm_stress), atribuidos a varidvel real A.
Paralelamente, real_data fornece dados da estrutura otimizada (output_struct) atribuidos

a variavel real_B.

Em seguida, real A passa pela fungao geradora (generator) para formar uma estru-
tura fake, sendo dada pela variavel fake B, que somando aos canais condicionais ( VF,
BC, posicao, direcao e sentido dos carregamentos, e v _stress) torna-se fake AB. Ana-
logamente, adicionam-se a variavel real_ B dados de VF, BC, posicao, direcao e sentido
dos carregamentos, e vm_stress, obtendo a variavel real AB. Enfim, fake_ AB e real AB
entram na discriminadora com os 6 canais condicionais, com a diferenca de que a discri-
minadora com fake AB reutiliza pesos ja treinados. Com isso, as discriminadoras com
fake_AB e com real_AB retornam, respectivamente logits_ e logits com valores referentes

a probabilidades entre 0 e 1.

Adicionalmente, calculam-se alguns erros, comparando fake B e real B por meio da
funcoes MSE, MAE e VFAE, de forma que cada elemento das estruturas fake B e real B

sao avaliados para gerar um erro atribuido durante a execugao de determinada época.

Por fim, aplicam-se as seguintes func¢oes de perda:

e gan loss_d_fake: verifica acerto da discriminadora em reconhecer um dado falso;
e gan loss_d real: verifica acerto da discriminadora em reconhecer um dado real;

e gan loss_d: verifica acerto da discriminadora em reconhecer um dado como real ou

falso;

e gan loss_g: verifica acerto da geradora em gerar um dado falso para a discriminadora

reconhecer como dado real; e

e ¢ loss final: verifica acerto da geradora em gerar um dado falso semelhante ao dado

provindo do dataset;

Para isso, as fungoes de perda relacionadas diretamente com a GAN aplicam a fungao

de entropia cruzada (sigmoid cross entropy with logits) a partir dos logits obtidos da
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ultima camada da discriminadora que realiza a classificacao binaria. Ou seja, os valores
de 0 ou 1 dos logits e labels sao comparados para calcular a fungao de perda sobre quais
dados a discriminadora acertou classificando o dado como sendo dado falso ou dado real.
Assim, o modelo é construido conforme Figura 27, destacando em cinza as fungoes de

perda e erros.

Dominio, BC, VF e load

[ Input do dataset TopOpt

real_data
Vi, vm_stress output_struct
[ real_A ]
| generator(real_A) |
¥
‘ fake B }— real_B —_—
VF, BC, load_pos, VF, BC, load_pos,
load_dir, load_sent, load_dir, load_sent,
vm_stress vm_stress
v _
‘ fake_AB | real_AB
Discrminator com Discriminator
reuso de varia’veig,

Logits_ Logits

Sigmoid cross entropy with logits

label =1

label = 1 label =0
¥

gan_loss_d_real

gan_loss_q | | gan_loss_d_fake

gan_loss_d

4{ MSE | |‘I."F."-‘-.E| |I".'1HE |

L2_lambda

| L1_lambda
- Y ¥ Y
g_loss_final
Figura 27: Modelo da rede. Fonte dos préprios autores.

Para gan_loss_d_fake, a fun¢ao de entropia cruzada compara logits_ (em vermelho)
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provindos do dado falso gerado (em azul) com um label igual 0, verificando se a discrimi-

nadora acertou e classificando o dado falso com label igual a zero.

J& para gan_loss_d_real, a fungao de entropia cruzada compara logits (em verde) pro-
vindos do dado real (em amarelo) com um label igual 1, verificando se a discriminadora

acertou e classificando o dado falso com label igual a um.

Para gan_loss_g, a fungao de entropia cruzada compara logits_ (em vermelho) provin-
dos do dado falso gerado (em azul) com um label igual 1, verificando se a discriminadora
errou e classificando o dado falso com label igual a um. Com isso, quando a discrimi-
nadora classifica um dado falso como sendo um dado real significa que a geradora esta

acertando, gerando dados falsos proximos de dados reais.

Por fim sao calculados gan_loss_d e g_loss_final. Para gan_loss_d, realiza-se a soma de
gan_loss_d_fake com gan_loss_d_real. Ja para g loss_final, realiza-se uma combinagao de

fatores mostrada na equacao 7.1:

g-loss_final = gan_loss_g + A1 - mse + Ay - v fae (7.1)

Nos proximos topicos, serao detalhados as camadas da geradora e da discriminadora.

7.4 (Geradora

A rede da geradora utilizada pelo presente trabalho se baseia em SE-ResNet, sendo
uma RNC ResNet melhorada por blocos SE (Squeeze-and-Excitation) como uma forma de
recalibracao da camada de convolugao (U). Para isso, as features da camada de convolugao
passam por uma operagao de compressao (sq) utilizando a funcao global average pooling,
o que permite que as features sejam utilizadas por todas as camadas. Em seguida, ocorre
uma operacao de excitagao (exc) que produz um conjunto de pesos para serem aplicados

na camada de convolugdo inicial [32]. Um bloco SE ¢ ilustrado na Figura 28.

X U y Y W) %
1x1=C I=1=( \ //////
H
| F, H Fyeate () ‘ m .
W' |} W

' C C

Figura 28: Bloco SE. Figura extraida de [32].

Os canais de entrada sao dados obtidos a partir do dataset: fracao de volume desejada
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e tensoes de von Mises da estrutura inicial nao otimizada. Observando a Figura 29, os dois
canais de entrada representam matrizes de dimensao 64x128 e iniciam a rede da geradora,
sofrendo uma primeira convolugao para obter os 128 (valor de gf_dim do setup) canais
(gf_dim do setup) representados por el. Foram utilizados strides de tamanho igual a 2 e

filtros de tamanho 5x5 nessa camada e nas demais camadas de convolucao e deconvolucao.

Em seguida uma LReLU seguida de uma convolucao é aplicada aos 256 canais repre-
sentados por e2 (dobro do valor de gf dim). Por fim é aplicada uma normalizagao em lote

(BN) para obter os 512 canais representados por e3 (quadruplo do valor de gf dim).

A partir de e3 inicia-se a uma série de 32 camadas utilizando SE-ResNet em que cada
camada ¢ iniciada com a sequéncia duplicada de: ReLU, deconvolugao, normalizagao em

lote e um bloco SE.

Ao final da geradora, sdao obtidos 3 conjuntos de canais de forma semelhante as
operagoes de convolucao iniciais em el, e2 e e3, porém, utilizando uma deconvolugao.
Além disso, tais conjuntos de canais obtidos sdo concatenados, de forma que a conca-

tenacao a e3 forma d1, analogamente, e2 forma d2 e el forma d3.

Por fim, apds operacoes de ReLU e deconvolucao, obtém-se a imagem falsa gerada
com uma dimensao de 64x128x1. A partir disso, aplica-se a funcao de ativagao sigmoid

sobre a imagem falsa gerada.

VF =
vm_stress

~Gdx 1, 28x2

32x64x128 . ) .
LReLU- ‘1Bx32><64 | _ MR

conv+BN T | - )L1ﬁx512,d i
LReLU=[" - =
conv+BN - 8x16x512 : _
8x1ﬁx512 IS T )
Bloco $E - _§x16>512 -
- RelU+ Bx16x]024 =l
Decom.r+BN ReLU+ 1Gx32x 13 I

Deconv+BN ReLJ+ -.3._25_64}(255

Deconv+EN

sax281

~RelU+
Deconv

Figura 29: Camadas da geradora. Fonte dos préoprios autores.

7.5 Discriminadora

Comparativamente, a rede da discriminadora é mais simples do que a rede da geradora,

uma vez que nao necessitar gerar dados novos para atingir determinada fungao objetivo.
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De modo diferente, o papel da rede discriminadora é classificar uma determinada imagem

de entrada como sendo falso ou real, rotulando valor zero ou um, respectivamente.

Conforme setup detalhado ainda neste capitulo, sao utilizados para entrada da dis-
criminadora os seis canais condicionais oriundos do dataset mais o canal representando a
estrutura topologicamente otimizada, esta podendo ser um dado falso obtido pela gera-

dora ou um dado real oriundo do dataset.

Assim, observando a Figura 30 a rede da discriminadora é iniciada, a partir dos sete
canais com dimensao 64x128, com uma operagao de convolucao seguida de um LReLU,
formando h0 com um nimero de canais iguais a 32 (valor de df_dim do setup). Analoga-
mente, utilizando operacao de convolucao seguida de BN e LReLU, sao obtidos hl, h2 e
h3. A partir de h3, realiza-se uma linearizacao que forma um vetor h4 de tamanho igual

a batch_size, contendo a classificacao real/falsa sobre cada estrutura do mini batch.

Por fim, aplica-se a funcao de ativacao sigmoid sobre h4.

canais
condicionais

+output_struct

]

64x128X(6+1) W — . batch_size x 1
32x64x32
o 16x64x64
X
HRety conv+ . linear
BMN + LRelLU B

conv+ ]
BN + LRelLU Bx16x128

conv+
BN + LRelU

4x8x256

Figura 30: Camadas da discriminadora. Fonte dos préprios autores.

7.6 Funcao objetivo

A equagao 7.1 que calcula g_loss_final representa a fungao objetivo da rede do modelo.
Assim, a geradora aprende a minimizar a combinacao dada pela funcao objetivo, isto é,
a geradora aprende a gerar dados novos préximos dos dados reais e que atinjam a fracao
de volume desejada. Para isso, utilizam-se os pesos A\; e Ay, sendo Ay igual a 1000 muito

maior que A; igual 1.
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8 TREINAMENTO E VALIDACAO DA REDE

A etapa de etapa de treinamento e validacao da rede parte divisao dos dados. Isto é
feito pois utilizar os mesmos dados para treinamento e teste criaria um viés, impedindo
uma real medicao da acuracidade da rede. Assim, foram reservados 80% dos dados para

treino e os 20% restantes para validacao.

8.1 Treinamento

O treinamento se inicia pela definicao dos parametros do otimizador Adam, inserindo
Ir (learning rate) igual a 0,001 e escolhendo as fungdes para minimizagao: para a geradora,
minimiza-se a funcao de perda g_loss_final; e para a discriminadora, minimiza-se a func¢ao

de perda gan_loss_d.

A partir disso, inicia-se o treino da rede considerando dois lagos. O primeiro executa
o numero de épocas e o segundo, inserido no primeiro, executa um min: batch baseado
no batch size do setup. A cada epdca sao atualizados os valores das funcoes de perda,
buscando minimizar g_loss_final e gan_loss_d. As demais fungoes de perda e erro também

sao atualizadas..

Destaca-se a criacao de checkpoints para armazenamento de dados da rede ao longo

das épocas treinadas, podendo assim ser reaproveitados para validacao e teste.

8.2 Validacao

Nesta se¢ao, mostra-se a importancia de realizar a validagao da rede para avaliar se o
treinamento esta promovendo um aprendizado da rede ao longos das épocas. Para tanto,
ocorre a divisao do dataset inicialmente construido. Para o caso de 2.000 dados, 400
correspondem aos dados de teste (20%), sendo os 1600 (80%) dados restantes divididos
entre 1.280 (80%) para dados de treino e 320 (20%) para dados de validagao.
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Assim, seguindo a sequéncia de lagos descritos para o treinamento, para cada época
e em cada min: batch sao realizadas avaliacoes por meio do céalculo das funcoes de erro

para amostras dos dados de validagao.
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9 RESULTADOS

O cédigo-fonte implementado em Python foi executado em notebook com a plataforma
Colab do Google, em que foi possivel treinar a rede utilizando paralelizacao dos processos
através de GPU e elevada memoria de 27,3 GB RAM em uma maquina Tesla P100 do
Colab. Apesar de ter sido necessaria a utilizagao da versao Colab PRO para modificar
os hiperparametros entre diferentes treinamentos, a versao gratuita é suficiente para um

treinamento.

9.1 Treinamento

Para cada treinamento, foram alterados alguns dos hiperparametros da rede, tomando
como base o setup mostrado no Apéndice A. O objetivo adotado foi a otimizacao da rede
tanto com relagao ao tempo de processamento quanto a minimizacao das fungoes de perda

€ erro.

Vale recordar os 6 canais condicionais da ¢cGAN mostrados no capitulo anterior, sendo

cada canal uma matriz de dimensao 64x128:

1. Posicao dos trés carregamentos;
2. Direcao dos trés carregamentos;
3. Sentido dos trés carregamentos;
4. Estados de tensoes de von Mises;
5. Fracao de volume; e

6. Condigoes de contorno;

Para o presente trabalho, nao houve variacao com relacao aos dois tltimos canais.

Manteve-se a fracao de volume constante e igual a 0,2. Da mesma forma, o canal relativo
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as condicoes de contorno foi mantido constante e correspondente a uma viga bi-apoiada

nas extremidades.

Com relacao aos quatro canais restantes, as matrizes sao formadas a partir do dataset
construido com 2.000 estruturas. Tais canais podem ser exemplificados pela Figura 31,

que apresenta os trés carregamentos bem como os estados de tensoes de von Mises.

Von Mises Stress Antes da Otimizacao

0 20 40 60 80 100 120 0.2
o, € [0.00, 0.46]

0,0

Figura 31: Representagao de quatro canais condicionais (dire¢do, sentido e posigao dos
trés carregamentos, e os estados de tensdes de von Mises) da rede. Fonte dos préprios
autores.

9.1.1 Epocas - 1° e 22 treinamento

O nuamero de épocas foi avaliado para verificar quando a convergéncia é obtida para
as funcoes de perda. Assim, o grafico da Figura 32 mostra a variacao das fungoes de
perda ao longo de 500 épocas com batch size igual a 64. Foram desconsideradas as duas
primeiras épocas em razao do ajuste de escala, uma vez que os pontos referentes a tais

épocas eram outliers.

Assim, considerando batch size igual a 64, verifica-se que a rede converge apods cerca
de 200 épocas. Este hiperparametro é importante, pois implica diretamente na reducao
do tempo de processamento do treinamento, tomando valor de 200 épocas para um 2°

treinamento.

Com a convergéncia mostrada pelas fungoes gan_loss_d_fake (representada por fake_loss)
e gan_loss_d_real (representada por real loss) no mesmo gréfico, a discriminadora nao mais
distingue um dado real de um dado falso, de modo que tais fungoes se estabilizam, retor-

nando um valor préximo de 0,5.
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Figura 32: Variagao das fungoes de perda ao longo de 500 épocas e batch
Fonte dos préprios autores.
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size igual a 64.
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9.1.2 Batchsize - 32 e 42 treinamentos

Os treinamentos anteriores foram realizados com batch size igual a 64. Em um terceiro
treino tentou-se reduzir o batch size para 8. Conforme observado na Figura 33, o gréfico
mostra que a rede nao convergiu dentro do nimero de épocas igual a 200. Ainda que
as fungoes de erro MAE, MSE e VFAE apresentem convergéncia, a discriminadora nao

conseguiu classificar corretamente dado como falso ou real.

Para um 4° treino, o batch size foi aumentado para 128. Assim, conforme observado
na Figura 34, o gréafico aponta indicios de convergéncia, porém o tempo de aprendizado

se torna mais lento, demandando maior niimero de épocas para obter convergéncia.

Além disso, nao houve variacao com relacao ao tempo de processamento dos treina-
mentos observado, mantendo-se por volta de 60 minutos a cada 100 épocas para o mesmo

dataset.
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Fonte dos préprios autores.
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ao longo de 200 épocas e batch size igual a 8.
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9.1.3 Evolugao do treinamento

Uma vez que os resultados da discriminadora comecam a convergir, pode-se entender
que a geradora finalizou seu aprendizado quanto a geragao de dados novos. Isto é, a
discriminadora treinou suficientemente a geradora, de modo que a discriminadora pode

ser descartada para validagao e teste retratados na proxima secao.

A evolucao ao longo de 200 épocas referente ao 1° treinamento é ilustrada pela
animagao da Figura 35, que mostra o dado gerado (geometria da esquerda) sendo classifi-
cado pela discriminadora como falso ou real, em comparacdo, com o dado real (geometria
da direita) provindo do dataset. Para isso, a rede conta com os seis canais condicionais,

em que quatro deles estao representados pela Figura 31.

O titulo da animacao da esquerda indica se o dado em questao foi classificado como real
ou falso. E possivel observar que as primeiras geometrias sao classificadas corretamente,

mas apds certo tempo a discriminadora comega a ter menor acerto.

Dado false classificado c

mo FALSO Dado real do dataset - Epoca 0

=

& 8 & 8

g [T EPRERRSS o

0 0 0 &0 0 120 0 0 ) &0 ) 100 120

Figura 35: Evolucao da geometria obtida a partir da geradora ao longo de 200 épocas.
[lustracao de fonte dos préprios autores.

9.2 Validacao

Durante o treinamento, foram coletadas amostras para avaliar o aprendizado das redes
discriminadora e geradora. Com isso, foram comparados as fungoes de erro MAE, MSE e

VFAE para os dados de treinamento e para os dados de validacao.

Assim, foram obtidos os graficos mostrados na Figura 36, em que as fungoes de erro
calculadas para treinamento apresentaram melhores resultados do que as calculadas para

para validacao.
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Figura 36: Variacao das funcoes de erro ao longo de 200 épocas e batch size igual a 64.

Fonte dos préprios autores.

9.3 Testes

Os dados de teste também provenientes do dataset inicialmente construido proveem

as mesmas informagoes que os dados de treino, com exce¢ao da geometria otimizada.

Além disso, a discriminadora é dispensada, sendo que a geradora ja treinada restaura os

checkpoints armazenados para gerar novas geometrias a partir dos canais condicionais.

Os resultados apresentados nesta secao se referem a um par de conjuntos de dados do

dataset com 4 quatro canais condicionais sendo representados pelas Figuras 37 (primeiro

conjunto) e 38 (segundo conjunto).
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Figura 37: Representagdo de quatro canais condicionais (dire¢ao, sentido e posi¢ao dos
trés carregamentos, e os estados de tensoes de von Mises) do primeiro conjunto para teste.
Fonte dos préprios autores.
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Figura 38: Representagao de quatro canais condicionais (dire¢do, sentido e posigao dos
trés carregamentos, e os estados de tensoes de von Mises) do segundo conjunto para teste.
Fonte dos préprios autores.

9.3.1 Geometrias geradas

Assim, a partir do par de conjuntos para teste, compara-se visualmente as geometrias

falsas geradas a geometrias reais do dataset.

As Figuras 39 e 40 sao relacionadas ao primeiro treinamento com 500 épocas, apresen-
tando geometrias falsas com maior correlagao com a geometria real do primeiro conjunto

e menor correlagao com a geometria real do segundo conjunto.

Reduzindo o niimero de épocas para 200, as Figuras 41 e 42 mostram geometrias falsas
com maior correlacao com a geometria real do primeiro conjunto e menor correlacao com

a geometria real do segundo conjunto.
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Figura 39: Resultado com maior correlacao, para 1° treinamento com 500 épocas, com a
geometria real do primeiro conjunto para teste. Fonte dos préprios autores.
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Figura 40: Resultado com menor correlacao, para 1° treinamento com 500 épocas, com a
geometria real do segundo conjunto para teste. Fonte dos proprios autores.
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Figura 41: Resultado com maior correlacao, para 1° treinamento com 200 épocas, com a
geometria real do primeiro conjunto para teste. Fonte dos préprios autores.
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Figura 42: Resultado com menor correlacao, para 1° treinamento com 200 épocas, com a
geometria real do segundo conjunto para teste. Fonte dos préprios autores.

Além desses resultados apresentados, outras geometrias constam no apéndice B.
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9.3.2 Funcoes de erro

Em seguida, sao calculadas as fungoes de erro — VFAE, MAE e MSE — comparando
as geometrias geradas com aquelas do dataset. Esse comparativo, mostrado na Figura 43,
¢ relativo as geometrias inseridas em cada mini batch estabelecido pelo batch size igual a
64. Ou seja, as 384 geometrias do dataset foram colocadas em 6 mini batches de tamanho
igual a 64, sendo comparadas as novas geometrias geradas também inseridas em 6 mini

batches.

00225
test_vfas

00200 : . : «  test_mse
test_mae
0.0175

0.0150
0.0125
0.0100

00075

Funcoes de erro

0.0050

00025

0 1 2 3 2 5 6
Mini batch

Figura 43: Funcoes de erro com relacao ao teste. Fonte dos préprios autores.

Por fim, as 384 novas geometrias foram geradas pela rede em 11 segundos. Vale
salientar que houve reducao do nimero de geometrias geradas em relacao ao nimero de
dados de teste inicial (400), pois o ntmero de geometrias geradas depende do valor de
batch size. Para batch size igual 64, foram geradas 64 geometrias novas (falsas) em cada

um dos 6 mins batches dos dados de teste.
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10 DISCUSSOES

10.1 Atendimento a requisitos

O presente trabalho atendeu aos requisitos de projeto seguindo a metodologia adotada.

Foram geradas 2.000 dados de estruturas para o dataset, compreendendo dados de
teste, treino e validagao. Para isso, foram contabilizados cerca de 80 minutos, ou seja,
gerou-se uma estrutura a cada 2,4 segundos, variando a posi¢ao, direcao e sentido dos trés

carregamentos.

A geracao do dataset e a implementacao do modelo da rede foram feitas em Python,
baseando-se em codigos abertos e livre como pacotes Tensorflow e Topopt. Por um lado, a
selecao dos melhores hiperparametros demandou maior processamento, sendo necessario
obter a licenca da plataforma Colab PRO para maior capacidade computacional. Por
outro lado, a versao gratuita do Colab é suficiente para realizar apenas um treinamento

da rede uma vez que também disponibiliza a paralelizacao de processos com GPU.

Foram geradas geometrias com topologias otimizadas a partir de um aprendizado
profundo pertencente ao estudo de Inteligéncia Artificial (IA). Dessa forma, o modelo
da metodologia adotada ¢ uma cGAN com 6 canais condicionais provenientes do dataset
construido. Foram utilizados seis canais condicionais para a entrada da rede, correspon-
dendo a matrizes de dimensao 64x128 e a matriz 64x128 referente a geometria otimizada

proveniente do dataset.

Com a rede treinada, a discriminadora da ¢GAN ¢ dispensada, enquanto a geradora
forma novas geometrias otimizadas a partir dos dados de teste. Assim, foram geradas
384 geometrias em 11 segundos, cumprindo o requisito de saida da rede em menos de 30
segundos por estrutura. Com isso, foram calculadas as funcoes de erro que apresentaram
uma somatdéria em torno de 2% para VFAE, 1,25% para MSE e menos de 0,5% para MAE.

Assim as funcoes de erro revelam que foi cumprido o requisito de erro menor que 5%.

Embora os requisitos de projeto tenham sido cumpridos, pode-se analisar as geome-
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trias geradas topologicamente otimizadas para entender quais variaveis influenciaram para

os resultados.

10.2 Geometrias geradas

Um primeiro ponto a ser destacado é que a rede foi treinada a partir de um data-
set limitado a variagao de trés carregamentos com relagao a posicao, direcao e sentido.
Assim, as geometrias otimizadas do dataset possuem as mesmas condi¢oes de contorno
iniciais sendo uma viga bi-apoiada nas extremidades e valor de fracao de volume constante
igual a 0,2. Com isso, a nao variacao de alguns dados contribui para o aprendizado da
rede. Mesmo assim, a rede aprendeu a gerar geometrias a partir de dados mais simples
relacionados aos carregamentos, mas também a partir de estados de tensoes que possuem

elevada variabilidade.

Em seguida, pode-se elencar alguns fatores que prejudicaram o aprendizado da rede,

fornecendo imagens com geometrias distantes das geometrias do dataset.

Primeiramente, quando a geometria otimizada do dataset apresenta segmentos es-
treitos, a geometria falsa gerada possui descontinuidades, inclusive nao sendo detectado
a presenca de material na maior parte do dominio 64x128. Mesmo, assim a funcao de
erro VFAE apresentou minima discrepancia. Com isso, verifica-se que a rede aprendeu
a reduzir a funcao de erro relativo a fracao de volume da geometria otimizada, concen-
trando material em uma regiao que possui maior proximidade de segmentos mais espessos,

conforme pode ser observado nas Figuras 40 e 42.

Para os treinamentos elucidados no capitulo de resultados, destacam-se alguns dos
hiperparametros que obtiveram melhor aprendizado e de forma mais eficiente. Compa-
rativamente, o 1° treinamento com nimero de épocas igual a 200 e batch size de 64

apresentou convergéncias para aprendizado tanto da discriminadora quanto da geradora.

Tendo como base essa rede treinada, os resultados podem ser melhorados a partir da
variacao de outros hiperparametros, além da tentativa de aumentar o nimero de dados

do dataset.

Alternativamente, em razao da alta incidéncia de imagens borradas, a geradora pode
ser restringida para modelar geometrias com segmentos estreitos. Para isso ao invés de
criar um dataset com valores aleatorios para as informacoes dos carregamentos, uma
estratégia é gerar um dataset com carregamentos em posicoes distantes, visando produzir

geometrias otimizadas com segmentos estreitos como pode demonstrado pelo segundo
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conjunto para teste com quatro dos seus canais condicionais mostrados na Figura 38.
Além disso, pode-se considerar carregamentos incidentes em uma mesma posi¢ao, o que

foi desprezado pelo dataset construido.



PARTE III

CONCLUSAO
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11 OBJETIVOS ALCANCADOS

O presente trabalho atingiu aos requisitos propostos trazendo uma rede funcional
no que diz respeito a geracao rapida de estruturas com topologia otimizada através de
software open source. Além disso, as estruturas testadas se mostraram com saidas muito

similares ao resultado obtido de otimizacao por metodologias tradicionais.

De modo geral, o trabalho supriu determinada caréncia com relagao a pesquisa ci-
entifica, dado que os autores nao participaram, por exemplo, de uma iniciacao cientifica

que se diferencia de trabalhos realizados durante a graduacao.

Além disso, o trabalho em equipe dos autores, que ja haviam trabalhado juntos em
grupos de extensao, possibilitou a entrega de um longo trabalho iniciado em 2020, ja com

orientacao da Profa. Larissa.

Por meio deste trabalho, os autores lidaram com dificuldades de acesso a tecnologias
de cédigos nao abertos, o que foi uma motivagao para implementar uma metodologia de

Inteligéncia Artificial.
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12 PROXIMOS PASSOS

Com objetivo de produzir melhores resultados através da metodologia abordada pelo
presente trabalho, uma primeira estratégia mencionada é aumentar o nimero de dados do
dataset. Durante a geragao do dataset construido com 2.000 a partir de dados aleatérios,
havia a possibilidade de unir diferentes datasets para produzir um dataset ainda maior.
No entanto, hd uma limitacao de meméria para produgao de arquivos grandes (maior que

1 GB), o que pode ser lidado nessa primeira estratégia.

Em seguida, podemos desenvolver, de forma mais aprofundada, parametros fisicos
para treinamento da rede, uma vez que foram considerados unitarios iniimeras constantes

fisicas.

Com isso em maos, as geometrias geradas pela rede cGAN podem ser validadas em

um software comercial como o Abaqus.

Por fim, incrementando a complexidade do treinamento da rede, uma segunda es-
tratégia é ampliar a variabilidade do dataset para abranger a variacao de fracao de volume,

condicoes de contorno, materiais, aumento do dominio, além de geometrias 3D.

Assim, o presente trabalho apresenta uma solucao de otimizagao topoldgica podendo,

através das estratégias mencionadas, ter uma aplicacao concreta.
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APENDICE A - PARAMETROS DO
SETUP

Tabela 1: Definicao dos parametros em Setup

Variavel Valor Descricao
batch_size 8 Tamanho do batch
input_c_dim 2 Numero de canais de entrada
output_c_dim 1 Ntumero de canais de saida
condition_dim 6 Numero de canais condicionais
overlap_dim 2 Numero de canais repetidos
L1_lambda 10000 Peso do termo L1 na funcao objetivo
L2 _lambda 1 Peso do termo L2 na funcao objetivo
epoch 201 Total de épocas
dataset_train_valid /train.npy Caminho dos dados de treino + validagao
dataset_test /test.npy Caminho dos dados de teste
input_size 128x64  Dimens. da imagem de entrada (largura x altura)
output_size 128x64 Dimens. da imagem de saida (largura x altura)
gf dim 128 Parametro de camadas da geradora
df_dim 32 Parametro de camadas da discriminadora
Ir 0.001 Taxa de aprendizado inicial do otimizador Adam

betal 0.5 Termo momentum do otimizado Adam
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APENDICE B - GEOMETRIAS
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Figura 44: Geometrias otimizadas (dado falso) pela rede com maior correlacao com a
geometria do dataset (dado verdadeiro), sendo uma geometria selecionada em cada um
dos 6 mini batche para teste. Fonte dos préprios autores.
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Figura 45: Geometrias otimizadas (dado falso) pela rede com menor correlagdo com a
geometria do dataset (dado verdadeiro), sendo uma geometria selecionada em cada um
dos 6 mini batches para teste. Fonte dos proprios autores.
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