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de que seria capaz. Eu só consegui chegar aqui e ser quem sou hoje graças a Deus e a
você.
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RESUMO

´

Com a crescente popularidade de processos de manufatura aditiva, otimização to-
pológica se torna um tópico relevante ao permitir estruturas mais fortes e mais leves. Ao
mesmo tempo que a dificuldade de manufatura das estruturas propostas é resolvida em
métodos aditivos, permanece a complexidade associada à geração da solução e o conse-
quente tempo computacional. Este trabalho explora inteligência artificial como solução do
problema apresentado, ao permitir a geração instantânea de estruturas. Foi adotada uma
metodologia baseada em redes generativas adversárias (GANs) utilizando softwares open
source para construção do dataset de treino e para treinamento da rede. Como resultado,
obteve-se uma rede capaz de gerar soluções instantâneas e com qualidade satisfatória para
problemas de otimização topológica. Como contraponto, foi adotado um escopo reduzido
no que diz a geometrias de estrutura inicial e condições de contorno, sendo um próximo
passo explorar a solução destes casos.

Palavras-Chave – GAN, otimização topológica, MEF.



ABSTRACT

As additive manufacturing grows in popularity, topology optimization becomes a re-
levant process as it enables the design of lighter and more rigid structures. At the same
time the difficulty to manufacture resulting structures is solved through additive methods,
there is still the complexity associated with the generation of the solution and resulting
high computational time. The presented work explores artificial intelligence as a solution
to this problem, allowing for the instant generation of structures. The proposed metho-
dology is based on generative adversarial networks (GANs) using open source softwares
to create the dataset necessary for training and the training of the network. As a result,
the network has been observed as capable of generating instant solutions with satisfactory
quality to the proposed topology optimization problem. However, a reduced scope has
been adopted regarding the geometry of the initial structure and the boundary conditions.
A next step would be to explore the cases not considered in more detail.

Keywords – GAN, topology optimization, FEM.
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1 DESCRIÇÃO DO TEMA

1.1 Apresentação do problema

Um projeto de engenharia mecânica, por exemplo, de estruturas, peças, ferramentas,

apoios e suportes, envolve parâmetros que satisfazem requisitos de projeto sob alguns

aspectos como propriedades do material, fração de volume e arquitetura. Esse último

aspecto necessita de um maior aprofundamento, dado que não envolve somente o layout

correspondente à distribuição do espaço com menor massa sob determinado domı́nio,

mas também o que a distribuição altera: vibrações, dinâmica, acústica, eletrostática e

magnetismo, resistência mecânica, aerodinâmica, condutividade elétrica e térmica [1].

Para tanto, o trabalho de [2] deu ińıcio, em 1988, à otimização topológica (OT) apli-

cada a um material homogêneo com pequenos furos obtendo como resultado uma estrutura

que suporta carregamentos previstos além de outros requisitos de projeto. Conforme de-

finição contida em [3], OT é uma metodologia que propõe uma distribuição de material

dentro de um domı́nio numa solução ótima, assim, partindo da dimensão do domı́nio dado

pelo requisito de projeto, busca-se atingir uma forma ótima com número e localização de

furos no layout.

Com isso, OT pode ser utilizado para resolver problemas dinâmicos de vibrações,

restrições de tensões, de conformação [3], microestrutura para manufatura aditiva e seus

mecanismos [4], condução de calor [5], materiais especiais como piezoelétricos [6], implan-

tes ortopédicos [7], e até mesmo projeto de espaços que comportam máquinas de múltiplos

eixos [8], além de estruturas para a indústria automobiĺıstica e aeronáutica [9] e [10]. OT

também pode ser uma solução para sustentabilidade ambiental, já que a estrutura fi-

nal utiliza menos matérias-primas [11] como a construção do Qatar National Convention

Center em Doha, visto na Figura 1.
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Figura 1: Qatar National Convention Center. Figura extráıda de
https://www.qncc.qa/about-qncc/gallery/qncc-venuesgallery-54 .

OT também pode ser combinada ao Método de Elementos Finitos (MEF) que ma-

ximiza ou minimiza uma função objetivo a partir de um domı́nio discretizado por um

número finito de elementos por meio de software como SolidWorks, Abaqus e Ansys.

Mesmo com essa combinação, o custo computacional empregado ainda é elevado, exi-

gindo tempo que aumenta com a diminuição do tamanho do elemento da malha e com a

complexidade da geometria, material e condições de contorno.

1.2 Motivação

Dadas as inúmeras aplicações como as citadas acima, busca-se desenvolver métodos

mais eficientes que apresentem estruturas próximas aos métodos tradicionais de OT.

Para tanto, aplicam-se conceitos de Aprendizado de Máquinas (AM) em OT, isto é,

desenvolvem-se redes neurais artificias (RNA) que permitam o aprendizado de um código-

fonte baseado em um dataset para gerar uma solução ótima. Assim, o escopo de aplicação

de OT não fica tão limitado ao custo computacional, adicionando um método para OT

por meio de RNAs.

Um dos pontos de partida para o estudo é observar a conhecida viga Messerschmitt-

Bölkow-Blohm (MBB) mostrada na Figura 2a. A viga MBB é bi-apoiada, com carga

concentrada no centro. A simetria é definida pelas condições de contorno aplicada no lado

esquerdo da viga. A Figura 2b apresenta outra geometria tradicionalmente utilizada em

OT, de uma viga engastada na extremidade esquerda e livre na direita. Na extremidade

livre é aplicado um carregamento concentrado.

A viga foi analisada foi analisada em [12] por diversos métodos de OT. Os resultados

obtidos pelos autores, em termos de geometria e tempo de processamento, são apresenta-

dos na Figura 3 com domı́nio de 180x60.
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(a) Viga MBB (b) Viga engastada

Figura 2: Vigas clássicas em OT. Figuras extráıdas de [12].

Figura 3: Comparação de modelos utilizando MBB. Extráıda de [12].

Portanto, ao apresentar uma OT com a utilização de recursos computacionais mais

acesśıveis, pode-se dispensar o uso de licenças de software pago. Assim, tal OT pode ser

aplicada à produção não-padronizada na indústria 4.0, em especial, na manufatura aditiva,

podendo-se obter qualquer estrutura a partir de desenvolvimento de layouts diferentes com

fornecimento apenas de requisitos de projeto como domı́nio, condições de contorno, fração

de volume e carregamento.
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2 ESTADO DA ARTE

2.1 Metodologias Tradicionais

Nesta seção, são apresentadas soluções tradicionais para o problema de OT. Em geral,

o objetivo final destas soluções é a obtenção de uma matriz que pode ser preenchida por

valores binários (0–1) ou cont́ınuos, indicando a presença de material em cada elemento

da matriz. Uma simplificação posśıvel é a adoção de um modelo tabuleiro de xadrez.

Neste caso, os valores da matriz podem ser apenas 0 ou 1, de modo binário, indicando a

presença ou não de material.

Assim, geometrias, que apresentam regiões predominantemente com tabuleiro de xa-

drez ou escala de cinza, revelam instabilidade numérica do modelo como pode ser visua-

lizado pela Figura 4.

Figura 4: Geometria com tabuleiro de xadrez. Figura extráıda de [13]

Uma solução mais sofisticada pode ser obtida ao usar um fator de penalidade ρ perten-

cente ao modelo de densidades SIMP (Solid Isotropic Material with Penalization) mos-

trado em [3]. SIMP apresenta uma função cont́ınua para descrever a distribuição de

material com valores de densidade variando de 0 a 1 controlados pelo fator ρ. No entanto,

o resultado apresenta um layout em escala de cinza que identifica a densidade do elemento

em vez da presença de material.

Uma proposta de OT foi implementada por [14] que otimiza visando uma homoge-

nização da estrutura, a partir da aplicação de um filtro de sensibilidade sobre o resultado

que possui tons de cinza. Tal aplicação aumenta o custo computacional da OT.
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Outros métodos também aplicáveis são ESO (Evolutionary Structural Optimization) e

BESO (Bi-direcional Evolutionary Structural Optimization), sendo o último uma evolução

do primeiro. ESO é um método baseado em remover, gradualmente, material da malha

apresentando uma topologia discreta. Assim, ESO parte da hipótese de que pequenas

alterações na topologia causam apenas efeitos locais relevantes para a estrutura [15]. Já

BESO é capaz de remover e, simultaneamente, adicionar material, dado significado ao

termo bidirecional do método.

Assim, foram implementados códigos-fonte utilizando esses métodos, por exemplo com

o SIMP. Em [16], foi proposto um código de 99 linhas para otimização topológica 2D que

inclui otimizador e rotina de MEF. O mesmo autor em [17] ainda modifica o método

SIMP, incluindo uma rigidez mı́nima para evitar singularidade.

Em seguida, o código foi aprimorado por [18] por meio do código de 88 linhas (Top88),

utilizado para gerar datasets de alguns dos artigos do estado da arte (como em [19]).

Top88 é um código-fonte aberto e implementado no MATLAB, tendo uma adaptação para

o Python. Assim, os autores do presente trabalho partiram da adaptação, denominada

TopOpt1, para gerar as figuras da ilustração 5. No exemplo, é posśıvel observar as 40

iterações obtidas em no processo da estrutura inicial até a estrutura final otimizada.

Figura 5: Evolução da estrutura otimizada ao longo das 40 iterações gerada com a bibli-
oteca em Python TopOpt. Ilustração de fonte dos próprios autores.

Top 88 apresenta tanto o filtro de sensibilidade quanto um filtro de densidade adicional

para que as densidades filtradas possuam coerência f́ısica [20]. Esta adição permite evitar

estruturas com trechos não suportados ou outras variações imposśıveis na prática.

No trabalho [18] os autores compararam os tempos de processamento para os códigos

Top88 e Top99, mostrando o primeiro como mais rápido que o segundo. Além disso, Top88

mostrou performance semelhante a outros métodos que aplicam filtros para geometrias

1https://www.topopt.mek.dtu.dk/apps-and-software/topology-optimization-codes-written-in-python
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mais complexas.

2.2 Metologias Modernas: OT com IA

Dentre as diferentes técnicas de OT e aprendizado de máquina, comumente se utiliza

aprendizado profundo (Deep Learning) com redes neurais convolucionais (RNCs). A

geração de dados é feita em análise de elementos finitos e método método SIMP.

O artigo pioneiro [21], de 2017, reportou OT utilizando RNC com sucesso em reduzir

o custo computacional. A rede utilizada pelos autores foi treinada com estruturas de

malha grosseira produzidas via MEF, mas que puderam ensinar a rede a gerar soluções

mais refinadas. O modelo RNC aplicado tem como entrada a estrutura intermediária já

otimizada pelo SIMP e como sáıda a estrutura sem os tons de cinza da entrada.

No ano seguinte, o artigo [22] propõe uma OT sem nenhuma iteração, utilizando rede

adversária generativa (GAN, do inglês Generative Adversarial Network).

Alternativamente, no trabalho [23], em 2019, os autores propuseram um modelo de

otimização que permite especificar um ponto sob o qual aplica-se uma força externa bem

como sua posição, direção e volume final da estrutura a ser otimizada. Para atingir este

objetivo, o modelo foi composto por duas redes: uma RNC e uma GAN. A primeira foi

treinada com dataset produzido por Top88 e resolução 32x32, permitindo uma primeira

solução. A segunda foi treinada com os dados da primeira de modo a refinar a solução de

entrada e obter uma maior resolução final.

O trabalho apresentado em [19] utiliza o Top88 para gerar estruturas de 32x32 elemen-

tos ao variar condições de contorno como área, fração de volume, distribuição e valor do

carregamento. A arquitetura da rede foi constrúıda com encoder e decoder demonstrados

nas Figuras 6 e 7. Dentre as operações utilizadas se destacam BN (batch normalization),

convolução (ReLu e Sigmoid), SPADE (Spatially Adaptive Denormalization), max pooling

(2x2) e upsampling (2x2). O trabalho atingiu tempo computacional menor que o Top88

com uma matriz de 32x32.

No artigo [24], os autores desenvolveram três modelos de RNC, onde o primeiro assume

material elástico linear e pequenas deformações e o segundo inclui grandes deformações.

O terceiro apresenta uma resposta em tempo real. Cada modelo utiliza o SIMP com

parâmetro ρ igual a 3, convergindo para uma resposta intermediária com densidades

binárias entre 0 e 1. Adicionalmente, o pacote de otimização TOSCA é utilizado pelo

código-fonte [25] para gerar o dataset, atribuindo as condições iniciais como fração de
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Figura 6: Encoder da arquitetura. Figura extráıda de [19]

Figura 7: Decoder da arquitetura. Figura extráıda de [19].

volume, direção do carregamento e ponto de aplicação. O dataset gerado contém 15 mil

pares de imagens 32x32.

Este dataset serve de base para a RNC do trabalho [24]. A RNC do mesmo trabalho

apresenta como entrada 5 matrizes de 32x32 e 33x33 com 1s e 0s correspondendo aos

nós onde são aplicados os carregamentos e condições de contorno. Já na sáıda, a RNC

apresenta uma matriz com valores entre 0 e 1 correspondendo às densidades do layout

ótimo obtido. A arquitetura da RNC é baseada na ResUnet, que combina a renomada

U-net com rede neural residual. Comparando com o trabalho [23], os resultados [24]

obtidos em menor tempo são melhores, pois não apresentam descontinuidades nem escala

de cinza.
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Figura 8: Resultados da rede cGAN. Figura extráıda de [26].
.

2.3 GANs e cGANs

Explorando inicialmente uma GAN, verifica-se que a GAN utiliza dois modelos que

competem entre si para gerar o resultado final a partir do modelo generativo G e do

modelo discriminativo D. O gerador G objetiva aprender uma função de densidade que

modela os dados de treino do dataset. Já o discriminador D objetiva diferenciar se a

entrada é advinda do dados de treino do dataset original (real data) ou se a entrada é

advinda dos dados modelados por G (fake data) como ilustrado na Figura 9.

Figura 9: Diagrama representando uma GAN. Figura extráıda de [26].
.
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Com isso, conforme mostrado na Figura 10, a cGAN é condicionada a uma entrada

adicional, ou seja, além das entradas advindas do gerador G e do dataset original, o

discriminador D também possui a mesma entrada do gerador G, assim, diminuindo o erro

do discernimento entre dadosreal ou dados fake.

Figura 10: Diagrama representando uma cGAN. Figura extráıda de [26].
.

Nesse sentido, as entradas comuns do gerador G e discriminador D empregados por [26]

são: domı́nio, fração de volume, condições de contorno e carregamento. A Figura 10

também mostra duas entradas adicionais que contribuem para resultado final: mapea-

mentos de tensões de von Mises e de energia de deformação.
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3 DEFINIÇÕES DE PROJETO

3.1 Objetivos

O objetivo deste trabalho é gerar, por IA, uma geometria otimizada de uma viga 2D

bi-apoiada nas extremidades, dados três carregamentos concentrados posição, direção e

sentido aleatórios.

Para tanto, a entrada da rede é um conjunto de dados que identifica, no espaço 2D

da viga, os carregamentos concentrados, a fração de volume desejada após otimização e o

estados de tensões da geometria inicial. A sáıda da rede é a geometria topologicamente

otimizada. Os resultados obtidos pela rede serão validados através do software Abaqus,

que faz otimização topológica.

3.2 Metodologia adotada

3.2.1 Rede neural artificial

Para o presente trabalho, utilizaremos redes adversárias generativas ou GANs, dentro

do pacote Tensorflow do Python. Mais especificamente, abordaremos uma cGAN sendo

uma GAN com canais condicionais na entrada.

3.2.2 Criação do dataset

A rede neural é uma técnica de aprendizado supervisionado, isto é, a rede aprende

através de exemplos rotulados. Portanto, é essencial a geração de um dataset, composto

dos dados de input e output para treinamento da rede. O processo de criação da rede para

solução do problema depende não só do desenvolvimento da arquitetura da mesma, mas

também de um dataset para treino. O dataset é composto por diferentes casos iniciais de

otimização topológica e uma solução obtida pelo pacote Topopt do Python. Destaca-se

que, por se tratar de uma estrutura com geometria e condições de contorno fixas, a análise
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estrutural por um software particularizado para esse tipo de problema, como é o caso do

pacote Topopt, tem um desempenho melhor que um software comercial como Abaqus.

Neste trabalho, o conjunto de casos parte sempre de um mesmo domı́nio base de

dimensões 64x128 e são variados os carregamentos fim de gerar diferentes soluções. Assim,

é posśıvel treinar a rede ao associar cada caso de entrada com a geometria otimizada

esperada.

A fim de variar as condições iniciais trabalharemos com um script em Python 3 para

geração de combinações aleatórias, gerando variações dos três carregamentos concentrados

de mesma intensidade a partir de:

• posição: uma dentre as posições dos 8192 elementos da malha, variando x entre 0 e

127 e variando y entre 0 e 63;

• direção: aplicação do carregamento em X (igual a 0) ou em Y (igual a 1); e

• sentido: positivo (igual a 1) ou negativo (igual a -1)

variando posição, direção e sentido de 3 carregamentos concentrados de mesma intensi-

dade.

O script fornece como sáıda 8192 (valor de 64 multiplicado por 128) valores entre 0–1,

que representam a porcentagem proporcional de material em cada pixel da malha. Como

pós-processamento, esses valores são transformados em escala de cinza e a nova geometria

otimizada é plotada. Além disso, o estado de tensões da estrutura otimizada também é

fornecido pelo script gerador do dataset. Porém, esses dados não são utilizados pela rede,

apenas para uma discussão posterior da viabilidade f́ısica da estrutura gerada.

A Figura 11 representa um caso exemplo da estrutura inicial e sua versão após a

otimização topológica, assim como as tensões de Von Misses associadas.

Figura 11: Estrutura exemplo antes e após otimização topológica. Carregamento indicado
por setas em vermelho. Fonte dos próprios autores.
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3.2.3 Input da Rede

A rede proposta neste trabalho visa resolver um problema fechado onde o domı́nio é

sempre o mesmo, variando apenas carregamentos. Sendo assim, a entrada da rede consiste

em um conjunto de parâmetros numéricos que descreve a posição dos carregamentos e a

sua direção e sentido.

3.2.4 Output da rede

A rede tem como output uma matriz de resolução 64x128 em escala de cinza indicando

a proporção de material no local respectivo.

3.3 Requisitos de projeto

Para presente trabalho, adotam-se os tópicos como requisitos de projeto:

• Topologia ótima obtida por IA com erro menor de 5% em relação à geometria ideal,

obtida por um software de elementos finitos;

• Resolução de entrada e sáıda: 64 (altura) x 128 (comprimento);

• Tempo máximo de geração do dataset : 1 minuto por estrutura;

• Dataset contendo no mı́nimo 2.000 estruturas variando carregamento;

• Acessibilidade: utilização de softwares somente de código aberto e livre; e

• Sáıda da rede: menor que 30s por estrutura.

3.4 Perspectivas

Do presente trabalho, espera-se propor a arquitetura de uma GAN condicionada para

otimização topológica de uma viga bi-apoiada nas extremidades com três cargas concen-

tradas e disponibilizar um dataset espećıfico de treinamento da rede.



PARTE II

DESENVOLVIMENTO



29

4 EMBASAMENTO TEÓRICO DE OT

Antes de tratar do dataset em si, aborda-se com maior propriedade a otimização

topológica, apontando os fundamentos do presente trabalho, em especial, para formação

do dataset. Para isso, é tomado como referência o livro [27] tendo como autor Ole Sigmund,

sendo citado pelas referências do estado da arte.

4.1 Definição de OT

OT parte de um problema aberto onde são conhecidos carregamentos, condições de

apoio, volume da estrutura e, em alguns casos, distribuição de densidade da estrutura.

Assim, o objetivo final é a definição da forma e conectividade da estrutura que atenda

aos requisitos.

Com isso em mente, mostra-se imprescind́ıvel diferenciar OT da otimização de dimen-

sionamento e de forma. Como pode ser vista na Figura 12, a estrutura obtida por OT

se distancia dos demais resultados obtidos pelas outras otimizações. Nota-se como dife-

rença marcante o fato de que a estrutura inicial para da OT possui domı́nio totalmente

preenchido, enquanto as demais otimizações já apresentam ind́ıcios das features a serem

otimizadas na própria estrutura inicial.
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Figura 12: Três categorias de otimização de estruturas. a) Otimização de dimensiona-
mento de treliça, b) Otimização de forma e c) OT. Figura extráıda de [27].

Assim, para cada estrutura bidimensional do dataset do presente trabalho, os atributos

conhecidos (input) são: dimensões do domı́nio, carregamentos concentrados, volume final

e condições de contorno.

4.2 Modelagem

A partir dos atributos conhecidos, realiza-se modelagem do problema em função de

certos objetivo e restrição, ou seja, modelagem pela minimização do compliance ou maxi-

mização da rigidez global sobre o domı́nio sendo discretizado em elementos finitos. Com

isso, observam-se as seguintes equações de equiĺıbrio para minimização do compliance c:

min c = fTu

K(Ee)u = f

K =
∑N

e=1Ke(Ee)

sendo u e f são vetores de deslocamento e de carregamento, Ee a rigidez de cada

elemento, K a matriz de rigidez global e N igual número de elementos da malha.

4.3 Parametrização

Para uma estrutura com material isotrópico, verifica-se quais elementos deveriam pos-

suir material e quais deveriam ser vazios, associando os elementos a uma renderização que

forma uma imagem pixelada com elementos com cores pretos e brancos, isto é, equivalente

a zero e um conforme equações abaixo.
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Eijkl = mE0
ijkl, sendo m=

{
1 (material)

0 vazio

Vmaterial ≤ V

sendo o volume limite V fornecido inicialmente, E0
ijkl o tensor de rigidez para o material

isotrópico.

4.4 Critérios para otimização

Os métodos iterativos propõem atualização das variáveis em cada ponto indepen-

dentemente da atualização dos demais pontos a cada iteração. Assim, é introduzido o

multiplicador lagrangiano Λ para as equações de equiĺıbrio, obtendo a seguinte expressão

em que a densidade de energia de tensão é igual a Λ:

pρ(e)p−1E0
ijklεij(u)εkl(u) = Λ

A partir disso, as densidades são atualizadas da seguinte forma a cada iteração K:

ρK+1 =


max(1− ζ)ρk, ρmin se ρkB

η
K ≤ max(1− ζ)ρk, ρmin

min(1 + ζ)ρk, 1 se min(1 + ζ)ρk, 1 ≤ ρkB
η
K

ρkB
η
K caso contrário

(4.1)

sendo que BK = Λ−1
K pρ(e)p−1E0

ijklεij(uK)εkl(uK) que atinge valor unitário para um

ótimo local, de modo que adiciona material quando BK > 1 e retira material quando

BK < 1; sendo valores t́ıpicos para os controladores de iteração ζ e η iguais a 0,2 e 0,5,

respectivamente, para obter uma convergência mais rapidamente.

4.5 SIMP (Solid Isotropic Material with Penaliza-

tion)

O conhecido método SIMP para OT troca as variáveis inteiras por variáveis cont́ınuas

como a densidade para cada elemento da malha ρ entre 0 e 1, adicionando um fator de

penalização p maior do que 1. Assim, temos:

Eijkl(e) = ρ(e)pE0
ijkl

sendo p para problemas bidimensionais
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p ≥ max { 2
1−ν ,

4
1+ν
}

sendo ν o coeficiente de Poisson para o material com tensor de rigidez E0
ijkl, o que implica

valor de p igual a 3 para ν = 1/3 .

Adicionalmente, pode-se inserir uma densidade mı́nima com ρmin = 10−3 para evitar

singularidades.

4.6 Implementação computacional

Para isso, a sequência é adotada:

1. Pré processamento da geometria e carregamento:

• Estabelecimento do domı́nio;

• Definição da estrutura inicial;

• Construção da malha de elementos finitos no plano 2D com resolução adequada;

• Definição dos carregamentos.

2. Otimização:

• Distribuição de material inicialmente homogênea;

• Análise de tensão por elementos finitos;

• Atualização das densidades da estrutura;

• Iteração da análise de tensão e atualização da densidade até a convergência

para a estrutura final otimizada.

3. Pós processamento:

• Interpretação da distribuição de material como uma representação ótima da

estrutura.

4.7 Simplificações

Domı́nio, intensidade de carregamento e propriedades do material são parâmetros que

podem ser simplificados a fim de permitir uma interpretação mais genérica dos resultados

e maior velocidade de processamento. No presente trabalho foi considerado domı́nio

retangular, elementos quadrados e carregamentos e propriedades unitárias no material.
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4.8 Análise de sensibilidade

Pode-se analisar a derivada parcial do compliance c em função da densidade no ńıvel

de cada elemento, desprezando demais efeitos sobre outras variáveis que envolvem o des-

locamento u.

∂c
∂ρe

= −pρp−1
e uTKeu

A equação acima mostra que a sensibilidade é negativa para todos os elementos,

confirmando que a adição de material implica a diminuição do compliance e aumento da

rigidez da estrutura.

4.9 MMA (Method of Moving Asymptote)

Tal método utilizado pelo pacote Topopt possui uma grande versatilidade para pro-

blemas de OT. MMA é um método de programação matemática que funciona como uma

sequência de subproblemas próximos do problema de forma mais simples, sendo que os

subproblemas são separáveis e convexos, baseados na sensibilidade da iteração vigente. A

solução do subproblema é utilizada na próxima iteração. Com isso, para implementação

computacional, adiciona-se o cálculo da sensibilidade no loop.

4.10 Topopt

MMA é utilizado pelo Top88 e também pelo pacote Topopt que está dispońıvel no link

1. O código-fonte está escrito em Python, o que torna-se atrativo para adaptação para

construção do dataset do presente trabalho. Além disso, essa versão do Topopt apresenta

maior versatilidade com relação ao número de carregamentos, podendo ser distribúıdo ou

concentrado, além de variar demais condições de contorno.

4.11 Filtros e considerações

Uma primeira consideração se refere à malha em formato de tabuleiro de xadrez, alter-

nando diretamente entre a existência ou não de material. Em uma segunda consideração,

1 https://github.com/zfergus/topopt
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verifica-se a dependência com o tamanho da malha, obtendo soluções diferentes ao va-

riar o número de elementos. Para não depender do refinamento da malha, são aplicados

filtros tanto para sensibilidade quanto para densidade. Os filtros de densidade limitam

grandes variações de densidade por meio de um parâmetro chamado raio de filtro r para

que a densidade em um elemento dependa também dos elementos vizinhos, suavizando a

imagem.

O formato de tabuleiro de xadrez tem seu padrão devidos a aproximação por elemen-

tos finitos, principalmente quando a modelagem numérica que superestima a rigidez dos

elementos. Como ponto de partida, pode-se restringir a escala geométrica, especificando

uma largura d mı́nima para partes com material e inclusão de vazios, o que equivale a

um filtro de uma janela circular para medir se a densidade é monotônica ou não. Uma

segunda forma seria aplicar um filtro de sensibilidades, restringindo gradiente local, isto

é, a sensibilidade de um elemento espećıfico depende de uma média ponderada das sen-

sibilidades dos elementos de uma vizinhança fixada ao elemento espećıfico. A aplicação

destes filtros tem como resultado esperado evitar estruturar com trechos finos demais e

que possam não representar na prática uma solução estável.

4.12 Fluxograma

Por fim, diante dos tópicos apresentados acima, obtém-se o seguinte fluxograma da

Figura 13.
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Figura 13: Fluxograma para implementação computacional de OT. Figura adaptada de
[27]
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5 DATASET

5.1 Construção do Dataset

O dataset foi constrúıdo utilizando como base, o código aberto de otimização to-

pológica em Python, a versão do Topopt apresentada no caṕıtulo 4. O código-fonte foi

adaptado de modo a retirar funcionalidades não desejadas para os fins deste trabalho e,

também, adicionar a geração aleatória de carregamentos. Como resultado, o tempo de

processamento foi reduzido e a velocidade de geração do dataset foi aumentada.

O arquivo do dataset foi gerado no formato ”.csv”onde cada linha é uma entrada do

dataset. Cada entrada apresenta como dados:

• Número de elementos da viga (largura e comprimento)

• Posição xy das 3 forças aplicadas

• Direção e sentido das 3 forças aplicadas

• Tensão na estrutura não otimizada

• Densidade dos elementos da estrutura otimizada (resposta esperada)

• Tensão na estrutura otimizada (validação da estrutura)

Nos tópicos a seguir será apresentado o processo implementado e a validação das

estruturas geradas.

5.1.1 Estrutura de partida

Foi utilizado como base de partida uma viga bi-apoiada cujos pontos de apoio se

encontram nos cantos inferiores direito e esquerdo. Foi criada uma malha com dimensão

128x64 com elementos de quadrados.
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A fim de simplificar o problema, foram assumidos valores adimensionais unitários para

comprimento, força e módulo de elasticidade. O coeficiente de Poisson utilizado foi de

0,3.

5.1.2 Parâmetros

O único elemento não definido na estrutura de partida foi o carregamento. Neste

caso, os parâmetros de posição, direção e sentido foram variados utilizando uma função

aleatória.

Cada um dos 3 carregamentos associados teve sua posição variada entre qualquer

um dos 8192 nós do domı́nio (128x64), tendo como direção aleatória uma das 4 direções

cartesianas principais.

5.2 Dataset em números

O dataset foi gerado com um tempo médio de 5 segundos para processamento de cada

iteração. Estima-se então um tempo de aproximadamente 14 horas para gerar as 10000

entradas do dataset. Para o presente trabalho, foram suficientes 2000 estruturas para o

dataset ocupando 1,16 GB.

5.3 Exemplos

As imagens 14, 15 e 16 abaixo representam 3 exemplos de entrada do dataset. As

setas em vermelho indicam cada um dos 3 carregamentos na estrutura não otimizada

(a esquerda) e na estrutura otimizada (a direita). As imagens também possuem um

mapeamento em cor das tensões observadas.

Figura 14: Imagem exemplo do dataset. Fonte dos próprios autores.
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Figura 15: Imagem exemplo do dataset. Fonte dos próprios autores.

Figura 16: Imagem exemplo do dataset. Fonte dos próprios autores.
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6 EMBASAMENTO TEÓRICO DE GAN

Para esta seção, o presente trabalho se baseia nas referências [28] e [29] para o es-

tudo de GANs (Redes Adversárias Generativas). Modelos generativos são apropriados

para tratamento de imagens, dado que pequenas mudanças de entrada da GAN, como

variação da posição do carregamento, implicam geometrias otimizadas diferentes. Assim,

um modelo generativo provê respostas para uma multiplicidade de problemas.

A partir disso, GANs são caracterizadas pela presença de uma rede geradora e uma

rede discriminadora competindo entre si. A rede discriminadora aprende a distinguir

imagens reais de imagens falsas e a rede geradora aprende a produzir imagens falsas se-

melhantes às reais. Observando o aprendizado das duas redes adversárias, a competição

entre elas é dada pela geradora tentando enganar a discriminadora com imagens falsas

cada vez mais parecidas com as reais, enquanto a discriminadora tenta acertar classifi-

cando as imagens como real ou falsa.

6.1 Redes adversárias

Primeiramente, destaca-se uma das redes que compõe uma GAN: a rede geradora G

que produz amostras segundo a função x = g(z; θg), em que z representa um conjunto de

números aleatórios (rúıdo) e θg, um conjunto de parâmetros da geradora. Paralelamente,

a rede discriminadora D, adversária de G, tenta distinguir as amostras x provindas de G

(dado falso) e amostras provindas do dataset (dado real), produzindo valores de probabi-

lidade definidos por d(x; θd) entre 0 e 1. Assim, um valor de probabilidade próximo de 1

corresponde à classificação de x como dado real; e um valor de probabilidade próximo de

0 corresponde à classificação de x como dado falso.

A partir desses valores de probabilidade, gera-se uma espécie de custo-benef́ıcio como

sendo uma função v(θg, θd) para a discriminadora e −v(θg, θd) para a geradora. De forma

análoga a um jogo competitivo, as redes possuem resultados opostos: quando uma está

próxima de acertar, significa que a outra está errando. Assim, quando a geradora produz
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um dado ruim e distante do dataset, a discriminadora facilmente acerta que o dado gerado

é falso. Ao mesmo tempo, quando a geradora produz um dado próximo do dataset, a

discriminadora irá errar com maior probabilidade e acreditar que o dado falso é verdadeiro.

Ao final, obtém-se uma convergência do aprendizado transcrita pela equação 6.1:

g∗ = arg min
g

max
d

v(g, d) , (6.1)

em que, a geradora busca minimizar o valor de v, enquanto a discriminadora busca

maximizá-lo. Com uma forma padronizada para modelar o custo-benef́ıcio v mostrado

por [28], temos a equação 6.2:

v(θg, θd) = Ex∼pdataset [logD(x)] + Ex∼pmodelo
[1− logD(x)] (6.2)

em que, o valor esperado para x proveniente do dataset é igual a 1, enquanto o valor

esperado para x proveniente da geradora é igual a 0.

A partir disso, o fluxo de dados ao longo de uma GAN pode ser demonstrado pela

Figura 17. O fluxo inicia-se, de modo paralelo, com entradas na discriminadora tanto

provindas de y (dataset) quanto de z passando por G. Por fim, a discriminadora provê

um resultado D(y) para dados que julga serem de y e um resultado D(G(z)) para dados

que julga serem de G. A partir dos resultados aprendidos pela discriminadora, a geradora

aprende a gerar dados melhores.

Figura 17: Demonstração do fluxo de informações de uma GAN. Fonte dos próprios
autores.

6.2 Convergência

Após treinamento da discriminadora e da geradora, a rede fornece apenas valores de

probabilidade iguais a 0,5, ou seja, o dado possui 50% de chance de ser falso e o mesmo de
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ser real, uma vez que a geradora treinada produz dados falsos idênticos aos dados reais.

Assim, a discriminadora torna-se incapaz de distinguir um dado falso de um dado real.

Alternativamente, se a geradora fornece somente dados ruins, distantes dos dados

reais, a discriminadora satura sabendo distinguir exatamente dado falso de real, de modo

que a geradora não consegue mais aprender.

Para isso, ao invés de treinar a geradora para minimizar o termo log(1 − D(x)) da

equação 6.2, a GAN pode aplicar uma função objetivo que maximize log(D(x)). Maiores

detalhes da função objetivo serão abordada no caṕıtulo seguinte, mas veremos no próximo

tópico um pseudocódigo para implementar o aprendizado da GAN.

6.3 Implementação

Uma das formas de aumentar as chances de convergência é realizar o seguinte algo-

ritmo, que obtém um gradiente de aprendizado da geradora a partir de um gradiente

fornecido à discriminadora:

Para um número de iterações de treinamento, faça:

Para k passos, faça:

Selecione m amostras provindas de um rúıdo z;

Selecione m amostras provindas do dataset ; e

Atualize a discriminadora com o gradiente igual a

∇θd

1

m

m∑
i=1

[
logD(xi) + log(1−D(zi))

]
; (6.3)

Selecione m amostras provindas de um rúıdo z; e

Atualize a geradora com o gradiente igual a

∇θg

1

m

m∑
i=1

[
log(1−D(zi)))

]
(6.4)

6.4 cGAN

Como uma forma de contribuir para convergência de GANs, uma cGAN mostra-se

mais vantajosa ao utilizar informações do próprio dataset, ou seja, informações de dados
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reais ao invés de utilizar números aleatórios presentes no rúıdo z.

No trabalho de [26], inputs de construção do dataset – condições de contorno, fração

de volume, carregamentos – somados a campos f́ısicos (estados de tensões de von Mises e

energias de deformação) em cada elemento do domı́nio, formam sete matrizes que a cGAN

utiliza como entrada. Essas sete matrizes de dimensão equivalente à dimensão do domı́nio

correspondem aos canais condicionais da rede. Como ilustração, comparativamente à

Figura 17, observa-se a Figura 18 em que um canal condicional, por exemplo, o canal de

estados de tensões é adicionado à discriminadora e à geradora.

Figura 18: Demonstração do fluxo de informações de uma cGAN. Fonte dos próprios
autores.

6.5 Camadas

Para isso, uma GAN é composta, tanto para a geradora como para a discriminadora,

por camadas de convolução, normalização e linearização, vistas nos próximos tópicos.

6.5.1 Convolução

A operação de convolução corresponde a uma camada da rede que realiza a multi-

plicação da entrada por um filtro seguindo um algoritmo espećıfico. Neste processo, o

filtro é sobreposto na matriz de entrada e são executadas multiplicações sequenciais mo-

vendo o filtro ao longo da imagem de entrada. O objetivo desta camada é a extração de

caracteŕısticas espećıficas da imagem, a depender do filtro (kernel) aplicado. A ilustração

da Figura 19 demonstra como é realizada a operação de convolução entre uma matriz de

entrada e o kernel resultando em uma matriz de sáıda.
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Figura 19: Operação de convolução. Ilustração de fonte dos próprios autores.

6.5.2 Deconvolução

A camada de deconvolução, como descrita por (Zeiler et al., 2010) em [30], constitui

um processo de redução de rúıdo através da execução da transposta do gradiente de uma

convolução.

6.5.3 Normalização

A etapa de normalização aplica uma transformação com objetivo de manter a sáıda

com média próxima de zero e desvio padrão próximo de 1. Esta camada é aplicada de

modo diferente durante o treinamento e a validação. Durante o treinamento, a camada

normaliza a sáıda com base nas entradas atuais, enquanto na validação a normalização é

feita com base em uma média móvel tanto da média quanto do desvio padrão observados

durante o treinamento. Neste processo é pressuposto que as entradas no treinamento e

na validação possuem distribuições estat́ısticas similares.

6.6 Hiperparâmetros

6.6.1 Filtros

Os filtros são tensores a serem aplicados nas camadas de convolução e deconvolução.

O filtro é movido sobre a imagem de entrada executando uma operação de multiplicação

na área sobreposta a cada passo, sendo que o tamanho do passo é igual ao valor de stride.

O conteúdo do tensor depende do tipo de caracteŕıstica que se deseja extrair. Um exemplo

de caracteŕıstica é a presença de linhas verticais ou horizontais na entrada.
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6.6.2 Stride

Stride é o passo entre cada aplicação do filtro dentro de uma camada de convolução,

indicando o número de colunas e linhas a serem movidos por vez. Normalmente, o valor é

igual na horizontal e na vertical. Por exemplo, a ilustração 19 demonstra uma convolução

com valor de stride igual 1.

6.6.3 Padding

Padding corresponde ao número de pixels nulos adicionados na borda exterior do dado

de entrada. O objetivo do padding é permitir a aplicação do filtro ao longo dos dados

também na borda da entrada.

6.6.4 Learning rate (lr)

Número entre 0.0001 e 0.01 que multiplica o gradiente obtido pelas camadas do trei-

namento. Sendo assim, é responsável por definir a velocidade de alteração dos parâmetros

otimizados ao fixar seu limite superior e inferior após o treinamento. O objetivo final do

lr é evitar sobreajuste ou sobajustes no aprendizado.

6.6.5 Batch size

Número de entradas fornecidas à rede por vez. Aumentar o batch size permite uma

maior velocidade de treinamento através de paralelização de atividades, porém podendo

ocasionar uma degradação do resultado. A partir do batch size e do tamanho do dataset,

é posśıvel inferir o número de épocas necessário para o aprendizado, uma vez que cada

época representa um batch correspondendo a um dos lotes do dataset para treinamento.

6.7 Funções de ativação

Como visto, muitas das operações são lineares, porém as RNCs necessitam de não-

linearidades para aprendizado mais generalizado a partir de funções de ativação.

Assim uma função de ativação realiza uma transformação não-linear, atualizando

variáveis da rede de acordo com a entrada. Vale destacar a possibilidade de utilização de

mais de uma função de ativação dado que há vantagens e desvantagens em cada uma no

treino.
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6.7.1 Linearização

Utilizada para casos em que a rede necessita interpretar o resultado a partir de uma

transformação linear da entrada. Por exemplo, no caso da sáıda da rede classificando

cada elemento do mini batch. A Figura 20 ilustra o gráfico da linearização em função da

entrada z conforme equação 6.5.

g(z) = z (6.5)

Figura 20: Linearização. Fonte dos próprios autores.

6.7.2 ReLU e LReLU

A função unidade linear retificada (ReLU) é presente na maioria das RNAs e torna

zero os valores negativos das entradas da função. Isto permite que apenas determinados

pontos da rede sejam ativados e tem como consequência a simplificação da rede por tornar

a ativação distribúıda e eficiente. Assim, a Figura 21 ilustra o gráfico da ReLU em função

da entrada z, conforme equação 6.6.

g(z) = max(0, z) (6.6)

Figura 21: ReLU. Fonte dos próprios autores.
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Além da função ReLU, existe a função Leaky ReLU (LReLU) que substitui valores

negativos por funções afins, removendo gradientes zero. A abordagem da LReLU é mais

efeciente do que a da ReLU. A Figura 22 ilustra o gráfico de uma LReLU em função da

entrada z, observando que para valores negativos de z, a função LReLU retorna um valor

diferente de zero, conforme equação 6.7.

g(z) = max(0, 1z, z) (6.7)

Figura 22: LReLU. Fonte dos próprios autores.

6.7.3 Sigmóide

A função sigmóide é dada pela equação 6.8 e auxilia classificadores binários uma vez

que retorna valores próximos de 0 ou próximos de 1. Observando a Figura 23 que ilustra

o gráfico da sigmóide em função da entrada z, verificam-se valores próximos de 0 ou 1

para a maior parte dos valores de z.

g(z) =
1

1 + e−z
(6.8)

Figura 23: Sigmóide. Fonte dos próprios autores.
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6.8 Funções de erro

Como avaliação da performance da rede, são utilizados algumas funções de erro: erro

médio absoluto (MAE), erro médio quadrático (MSE) e erro absoluto da fração de volume

(VFAE).

Desse modo, para os cálculos de MAE e MSE, são comparados os valores y do target

(dado do dataset) com valores ŷ encontrados pela rede. Da mesma forma, para o cálculo

de VFAE, são comparados os valores da fração de volume V F do dataset com valores V̂ F

encontrados pela rede.

6.8.1 MAE

MAE =
1

M

M∑
i=1

|y(i) − ŷ(i)| (6.9)

Para o presente trabalho, em que serão analisados elementos de uma malha, pode-se

tratar M como número total de exemplos da amostra e N igual ao número de elementos

da malha. Com isso, tem-se que:

MAE =
1

M

M∑
i=1

N∑
e=1

∣∣y(i)e − ŷ(i)e∣∣ 1

N
(6.10)

6.8.2 MSE

MSE =
1

M

M∑
i=1

(y(i) − ŷ(i))2 (6.11)

Analogamente, para o presente trabalho, tem-se que:

MSE =
1

M

M∑
i=1

N∑
e=1

|y(i)e − ŷ(i)e| 1
N

(6.12)
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6.8.3 VFAE

V FAE =
V̂ F − V F

V F
, onde V F =

1

N

N∑
e=1

ye (6.13)

6.9 Funções de custo

As funções de custo, também chamadas de funções de perda (loss function), auxiliam

o treinamento da rede, de modo que quanto menor o valor retornado pela função de custo,

melhor será a acurácia da rede treinada.

Um exemplo é a entropia cruzada que relaciona a perda entre duas distribuições de

probabilidade. No caso de uma GAN, as distribuições de probabilidade correspondem às

predições da rede discriminadora em detectar um dado falso ou um dado real. Outras

funções de custo aplicadas no presente trabalho serão detalhadas no caṕıtulo seguinte.
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7 ARQUITETURA DA REDE

Tomando como base a cGAN elucidada em [26], o presente trabalho utilizou o dataset

desenvolvido e descrito no caṕıtulo 5 para dados de treino, validação e teste. Neste

caṕıtulo será dado destaque ao fluxo de informações ao longo da rede, desde a entrada até

a sáıda. Adicionalmente, o código-fonte utilizado no presente trabalho será disponibilizado

em conjunto com o gerador do dataset no repositório em 1.

7.1 Tensorflow

Como sendo um dos principais pacotes de código aberto para desenvolver e criar

modelos de Aprendizado de Máquina, o TensowFlow foi utilizado em combinação com

a linguagem orientada a objetos Python. A partir disso, cria-se uma sessão capaz de

armazenar e atualizar variáveis da rede ao longo da execução do modelo. Isso é posśıvel,

uma vez que o Tensorflow gera grafos com fluxo de dados que representam um estado

compartilhado bem com operações que alteram tal estado [31].

Inputs gerais como dataset e hiperparâmetros são introduzidos no bloco de setup

antes da construção do modelo ilustrado pela Figura 24. Em seguida, com os métodos

e objetos do modelo definidos, obtém-se as redes geradora e discriminadora combinadas

em funções objetivo. Assim com as redes adversárias definidas, o treino é iterado ao

longo de épocas, atualizando variáveis da função objetivo para obter uma convergência.

Após uma avaliação dessa convergência, o modelo é validado. Os checkpoints do modelo

correspondem às caracteŕısticas definidas ao longo do treino e podem ser aplicados a dados

de teste.

1https://github.com/kaioogawa/IA-para-OT
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Figura 24: Fluxograma no Tensorflow. Fonte dos próprios autores.

7.2 Setup

Primeiramente, são estabelecidos e fornecidos todos as informações que o modelo

necessita para execução da rede na sessão do Tensorflow. Essas informações são elencadas

na tabela encontrada no Apêndice A. Os nomes das variáveis apresentadas ao longo do

caṕıtulos são fiéis às variáveis do código-fonte disponibilizado.

As variáveis relacionadas aos canais da rede — input c dim, output c dim, condi-

tion dim e overlap dim – foram introduzidas para organização dos dados provindos do

dataset.

A variável input c dim, igual a 2, se refere aos dois canais de entrada que vão auxiliar

o treino da rede: canal com tensões de von Mises (vm stress) e canal com fração de volume

(VF). Estes canais correspondem a matrizes com mesma dimensão do domı́nio (128x64)

e armazenam um valor em cada elemento da matriz. Para o presente trabalho, VF foi

mantido constante igual a 0,2. A Figura 25 ilustra o domı́nio da viga bi-apoiada nas

extremidades inferiores, de modo que cada elemento da matriz representada recebe um

valor referente aos dados do dataset.

Figura 25: Canal da rede. Fonte dos próprios autores.
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Adicionalmente, repetindo os mesmos canais do input c dim conforme parâmetro over-

lap dim igual 2, o parâmetro condition dim, igual a 6, acrescenta quatro canais condici-

onais relativos aos dados em que o dataset foi baseado para obtenção das estruturas

otimizadas: condições de contorno (BC) e carregamentos concentrados. Como simpli-

ficação, considerou-se as mesmas condições de contorno do dataset, formando um canal

para BC de dimensão 128x64. Com relação aos canais para as forças, os carregamentos fo-

ram separadas em matrizes de direção, sentido e posição, considerando forças em posições

diferentes. Ou seja, um canal 128x64 armazena a posição das três forças (loads pos); um

segundo canal 128x64 para o sentido das três forças de acordo com o canal de posições

(loads sent); e um terceiro canal 128x64 para a direção das três forças de acordo com o

canal de posições (loads dir).

Além disso, o output c dim se refere ao canal que possui a estrutura otimizada (out-

put scrut) pertencente ao dataset, sendo uma matriz com mesma dimensão do domı́nio,

armazenando um valor [0–1] em cada elemento da matriz de dimensão 128x64. Resumi-

damente, a Figura 26 ilustra a intersecção dos canais.

Figura 26: Canais de entrada e canais condicionais da rede. Fonte dos próprios autores.
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7.3 Modelo

A partir do Setup, o modelo é constrúıdo partindo do dataset formado pelo pacote

TopOpt para suprir os canais de entrada e canais condicionais da rede. Assim, obtém-se a

primeira variável do modelo chamada real data. Em seguida, real data fornece dados de

fração de volume (VF) e tensões de von Mises (vm stress), atribúıdos à variável real A.

Paralelamente, real data fornece dados da estrutura otimizada (output struct) atribúıdos

à variável real B.

Em seguida, real A passa pela função geradora (generator) para formar uma estru-

tura fake, sendo dada pela variável fake B, que somando aos canais condicionais ( VF,

BC, posição, direção e sentido dos carregamentos, e vm stress) torna-se fake AB. Ana-

logamente, adicionam-se à variável real B dados de VF, BC, posição, direção e sentido

dos carregamentos, e vm stress, obtendo a variável real AB. Enfim, fake AB e real AB

entram na discriminadora com os 6 canais condicionais, com a diferença de que a discri-

minadora com fake AB reutiliza pesos já treinados. Com isso, as discriminadoras com

fake AB e com real AB retornam, respectivamente logits e logits com valores referentes

a probabilidades entre 0 e 1.

Adicionalmente, calculam-se alguns erros, comparando fake B e real B por meio da

funções MSE, MAE e VFAE, de forma que cada elemento das estruturas fake B e real B

são avaliados para gerar um erro atribúıdo durante a execução de determinada época.

Por fim, aplicam-se as seguintes funções de perda:

• gan loss d fake: verifica acerto da discriminadora em reconhecer um dado falso;

• gan loss d real: verifica acerto da discriminadora em reconhecer um dado real;

• gan loss d: verifica acerto da discriminadora em reconhecer um dado como real ou

falso;

• gan loss g: verifica acerto da geradora em gerar um dado falso para a discriminadora

reconhecer como dado real; e

• g loss final: verifica acerto da geradora em gerar um dado falso semelhante ao dado

provindo do dataset ;

Para isso, as funções de perda relacionadas diretamente com a GAN aplicam a função

de entropia cruzada (sigmoid cross entropy with logits) a partir dos logits obtidos da



53

última camada da discriminadora que realiza a classificação binária. Ou seja, os valores

de 0 ou 1 dos logits e labels são comparados para calcular a função de perda sobre quais

dados a discriminadora acertou classificando o dado como sendo dado falso ou dado real.

Assim, o modelo é constrúıdo conforme Figura 27, destacando em cinza as funções de

perda e erros.

Figura 27: Modelo da rede. Fonte dos próprios autores.

Para gan loss d fake, a função de entropia cruzada compara logits (em vermelho)
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provindos do dado falso gerado (em azul) com um label igual 0, verificando se a discrimi-

nadora acertou e classificando o dado falso com label igual a zero.

Já para gan loss d real, a função de entropia cruzada compara logits (em verde) pro-

vindos do dado real (em amarelo) com um label igual 1, verificando se a discriminadora

acertou e classificando o dado falso com label igual a um.

Para gan loss g, a função de entropia cruzada compara logits (em vermelho) provin-

dos do dado falso gerado (em azul) com um label igual 1, verificando se a discriminadora

errou e classificando o dado falso com label igual a um. Com isso, quando a discrimi-

nadora classifica um dado falso como sendo um dado real significa que a geradora está

acertando, gerando dados falsos próximos de dados reais.

Por fim são calculados gan loss d e g loss final. Para gan loss d, realiza-se a soma de

gan loss d fake com gan loss d real. Já para g loss final, realiza-se uma combinação de

fatores mostrada na equação 7.1:

g loss final = gan loss g + λ1 ·mse+ λ2 · vfae (7.1)

Nos próximos tópicos, serão detalhados as camadas da geradora e da discriminadora.

7.4 Geradora

A rede da geradora utilizada pelo presente trabalho se baseia em SE-ResNet, sendo

uma RNC ResNet melhorada por blocos SE (Squeeze-and-Excitation) como uma forma de

recalibração da camada de convolução (U). Para isso, as features da camada de convolução

passam por uma operação de compressão (sq) utilizando a função global average pooling,

o que permite que as features sejam utilizadas por todas as camadas. Em seguida, ocorre

uma operação de excitação (exc) que produz um conjunto de pesos para serem aplicados

na camada de convolução inicial [32]. Um bloco SE é ilustrado na Figura 28.

Figura 28: Bloco SE. Figura extráıda de [32].

Os canais de entrada são dados obtidos a partir do dataset : fração de volume desejada
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e tensões de von Mises da estrutura inicial não otimizada. Observando a Figura 29, os dois

canais de entrada representam matrizes de dimensão 64x128 e iniciam a rede da geradora,

sofrendo uma primeira convolução para obter os 128 (valor de gf dim do setup) canais

(gf dim do setup) representados por e1. Foram utilizados strides de tamanho igual a 2 e

filtros de tamanho 5x5 nessa camada e nas demais camadas de convolução e deconvolução.

Em seguida uma LReLU seguida de uma convolução é aplicada aos 256 canais repre-

sentados por e2 (dobro do valor de gf dim). Por fim é aplicada uma normalização em lote

(BN) para obter os 512 canais representados por e3 (quádruplo do valor de gf dim).

A partir de e3 inicia-se a uma série de 32 camadas utilizando SE-ResNet em que cada

camada é iniciada com a sequência duplicada de: ReLU, deconvolução, normalização em

lote e um bloco SE.

Ao final da geradora, são obtidos 3 conjuntos de canais de forma semelhante às

operações de convolução iniciais em e1, e2 e e3, porém, utilizando uma deconvolução.

Além disso, tais conjuntos de canais obtidos são concatenados, de forma que a conca-

tenação a e3 forma d1, analogamente, e2 forma d2 e e1 forma d3.

Por fim, após operações de ReLU e deconvolução, obtém-se a imagem falsa gerada

com uma dimensão de 64x128x1. A partir disso, aplica-se a função de ativação sigmoid

sobre a imagem falsa gerada.

Figura 29: Camadas da geradora. Fonte dos próprios autores.

7.5 Discriminadora

Comparativamente, a rede da discriminadora é mais simples do que a rede da geradora,

uma vez que não necessitar gerar dados novos para atingir determinada função objetivo.
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De modo diferente, o papel da rede discriminadora é classificar uma determinada imagem

de entrada como sendo falso ou real, rotulando valor zero ou um, respectivamente.

Conforme setup detalhado ainda neste caṕıtulo, são utilizados para entrada da dis-

criminadora os seis canais condicionais oriundos do dataset mais o canal representando a

estrutura topologicamente otimizada, esta podendo ser um dado falso obtido pela gera-

dora ou um dado real oriundo do dataset.

Assim, observando a Figura 30 a rede da discriminadora é iniciada, a partir dos sete

canais com dimensão 64x128, com uma operação de convolução seguida de um LReLU,

formando h0 com um número de canais iguais a 32 (valor de df dim do setup). Analoga-

mente, utilizando operação de convolução seguida de BN e LReLU, são obtidos h1, h2 e

h3. A partir de h3, realiza-se uma linearização que forma um vetor h4 de tamanho igual

a batch size, contendo a classificação real/falsa sobre cada estrutura do mini batch.

Por fim, aplica-se a função de ativação sigmoid sobre h4.

Figura 30: Camadas da discriminadora. Fonte dos próprios autores.

7.6 Função objetivo

A equação 7.1 que calcula g loss final representa a função objetivo da rede do modelo.

Assim, a geradora aprende a minimizar a combinação dada pela função objetivo, isto é,

a geradora aprende a gerar dados novos próximos dos dados reais e que atinjam a fração

de volume desejada. Para isso, utilizam-se os pesos λ1 e λ2, sendo λ2 igual a 1000 muito

maior que λ1 igual 1.
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8 TREINAMENTO E VALIDAÇÃO DA REDE

A etapa de etapa de treinamento e validação da rede parte divisão dos dados. Isto é

feito pois utilizar os mesmos dados para treinamento e teste criaria um viés, impedindo

uma real medição da acuracidade da rede. Assim, foram reservados 80% dos dados para

treino e os 20% restantes para validação.

8.1 Treinamento

O treinamento se inicia pela definição dos parâmetros do otimizador Adam, inserindo

lr (learning rate) igual a 0,001 e escolhendo as funções para minimização: para a geradora,

minimiza-se a função de perda g loss final; e para a discriminadora, minimiza-se a função

de perda gan loss d.

A partir disso, inicia-se o treino da rede considerando dois laços. O primeiro executa

o número de épocas e o segundo, inserido no primeiro, executa um mini batch baseado

no batch size do setup. A cada epóca são atualizados os valores das funções de perda,

buscando minimizar g loss final e gan loss d. As demais funções de perda e erro também

são atualizadas..

Destaca-se a criação de checkpoints para armazenamento de dados da rede ao longo

das épocas treinadas, podendo assim ser reaproveitados para validação e teste.

8.2 Validação

Nesta seção, mostra-se a importância de realizar a validação da rede para avaliar se o

treinamento está promovendo um aprendizado da rede ao longos das épocas. Para tanto,

ocorre a divisão do dataset inicialmente constrúıdo. Para o caso de 2.000 dados, 400

correspondem aos dados de teste (20%), sendo os 1600 (80%) dados restantes divididos

entre 1.280 (80%) para dados de treino e 320 (20%) para dados de validação.
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Assim, seguindo a sequência de laços descritos para o treinamento, para cada época

e em cada mini batch são realizadas avaliações por meio do cálculo das funções de erro

para amostras dos dados de validação.
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9 RESULTADOS

O código-fonte implementado em Python foi executado em notebook com a plataforma

Colab do Google, em que foi posśıvel treinar a rede utilizando paralelização dos processos

através de GPU e elevada memória de 27,3 GB RAM em uma máquina Tesla P100 do

Colab. Apesar de ter sido necessária a utilização da versão Colab PRO para modificar

os hiperparâmetros entre diferentes treinamentos, a versão gratuita é suficiente para um

treinamento.

9.1 Treinamento

Para cada treinamento, foram alterados alguns dos hiperparâmetros da rede, tomando

como base o setup mostrado no Apêndice A. O objetivo adotado foi a otimização da rede

tanto com relação ao tempo de processamento quanto à minimização das funções de perda

e erro.

Vale recordar os 6 canais condicionais da cGAN mostrados no caṕıtulo anterior, sendo

cada canal uma matriz de dimensão 64x128:

1. Posição dos três carregamentos;

2. Direção dos três carregamentos;

3. Sentido dos três carregamentos;

4. Estados de tensões de von Mises;

5. Fração de volume; e

6. Condições de contorno;

Para o presente trabalho, não houve variação com relação aos dois últimos canais.

Manteve-se a fração de volume constante e igual a 0,2. Da mesma forma, o canal relativo
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às condições de contorno foi mantido constante e correspondente a uma viga bi-apoiada

nas extremidades.

Com relação aos quatro canais restantes, as matrizes são formadas a partir do dataset

constrúıdo com 2.000 estruturas. Tais canais podem ser exemplificados pela Figura 31,

que apresenta os três carregamentos bem como os estados de tensões de von Mises.

Figura 31: Representação de quatro canais condicionais (direção, sentido e posição dos
três carregamentos, e os estados de tensões de von Mises) da rede. Fonte dos próprios
autores.

9.1.1 Épocas - 1º e 2º treinamento

O número de épocas foi avaliado para verificar quando a convergência é obtida para

as funções de perda. Assim, o gráfico da Figura 32 mostra a variação das funções de

perda ao longo de 500 épocas com batch size igual a 64. Foram desconsideradas as duas

primeiras épocas em razão do ajuste de escala, uma vez que os pontos referentes a tais

épocas eram outliers.

Assim, considerando batch size igual a 64, verifica-se que a rede converge após cerca

de 200 épocas. Este hiperparâmetro é importante, pois implica diretamente na redução

do tempo de processamento do treinamento, tomando valor de 200 épocas para um 2º

treinamento.

Com a convergência mostrada pelas funções gan loss d fake (representada por fake loss)

e gan loss d real (representada por real loss) no mesmo gráfico, a discriminadora não mais

distingue um dado real de um dado falso, de modo que tais funções se estabilizam, retor-

nando um valor próximo de 0,5.
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Figura 32: Variação das funções de perda ao longo de 500 épocas e batch size igual a 64.
Fonte dos próprios autores.
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9.1.2 Batchsize - 3º e 4º treinamentos

Os treinamentos anteriores foram realizados com batch size igual a 64. Em um terceiro

treino tentou-se reduzir o batch size para 8. Conforme observado na Figura 33, o gráfico

mostra que a rede não convergiu dentro do número de épocas igual a 200. Ainda que

as funções de erro MAE, MSE e VFAE apresentem convergência, a discriminadora não

conseguiu classificar corretamente dado como falso ou real.

Para um 4º treino, o batch size foi aumentado para 128. Assim, conforme observado

na Figura 34, o gráfico aponta ind́ıcios de convergência, porém o tempo de aprendizado

se torna mais lento, demandando maior número de épocas para obter convergência.

Além disso, não houve variação com relação ao tempo de processamento dos treina-

mentos observado, mantendo-se por volta de 60 minutos a cada 100 épocas para o mesmo

dataset.
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Figura 33: Variação das funções de perda ao longo de 200 épocas e batch size igual a 8.
Fonte dos próprios autores.
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Figura 34: Variação das funções de perda ao longo de 200 épocas e batch size igual a 128.
Fonte dos próprios autores.
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9.1.3 Evolução do treinamento

Uma vez que os resultados da discriminadora começam a convergir, pode-se entender

que a geradora finalizou seu aprendizado quanto à geração de dados novos. Isto é, a

discriminadora treinou suficientemente a geradora, de modo que a discriminadora pode

ser descartada para validação e teste retratados na próxima seção.

A evolução ao longo de 200 épocas referente ao 1º treinamento é ilustrada pela

animação da Figura 35, que mostra o dado gerado (geometria da esquerda) sendo classifi-

cado pela discriminadora como falso ou real, em comparação, com o dado real (geometria

da direita) provindo do dataset. Para isso, a rede conta com os seis canais condicionais,

em que quatro deles estão representados pela Figura 31.

O t́ıtulo da animação da esquerda indica se o dado em questão foi classificado como real

ou falso. É posśıvel observar que as primeiras geometrias são classificadas corretamente,

mas após certo tempo a discriminadora começa a ter menor acerto.

Figura 35: Evolução da geometria obtida a partir da geradora ao longo de 200 épocas.
Ilustração de fonte dos próprios autores.

9.2 Validação

Durante o treinamento, foram coletadas amostras para avaliar o aprendizado das redes

discriminadora e geradora. Com isso, foram comparados as funções de erro MAE, MSE e

VFAE para os dados de treinamento e para os dados de validação.

Assim, foram obtidos os gráficos mostrados na Figura 36, em que as funções de erro

calculadas para treinamento apresentaram melhores resultados do que as calculadas para

para validação.
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Figura 36: Variação das funções de erro ao longo de 200 épocas e batch size igual a 64.
Fonte dos próprios autores.

9.3 Testes

Os dados de teste também provenientes do dataset inicialmente constrúıdo proveem

as mesmas informações que os dados de treino, com exceção da geometria otimizada.

Além disso, a discriminadora é dispensada, sendo que a geradora já treinada restaura os

checkpoints armazenados para gerar novas geometrias a partir dos canais condicionais.

Os resultados apresentados nesta seção se referem a um par de conjuntos de dados do

dataset com 4 quatro canais condicionais sendo representados pelas Figuras 37 (primeiro

conjunto) e 38 (segundo conjunto).
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Figura 37: Representação de quatro canais condicionais (direção, sentido e posição dos
três carregamentos, e os estados de tensões de von Mises) do primeiro conjunto para teste.
Fonte dos próprios autores.

Figura 38: Representação de quatro canais condicionais (direção, sentido e posição dos
três carregamentos, e os estados de tensões de von Mises) do segundo conjunto para teste.
Fonte dos próprios autores.

9.3.1 Geometrias geradas

Assim, a partir do par de conjuntos para teste, compara-se visualmente as geometrias

falsas geradas a geometrias reais do dataset.

As Figuras 39 e 40 são relacionadas ao primeiro treinamento com 500 épocas, apresen-

tando geometrias falsas com maior correlação com a geometria real do primeiro conjunto

e menor correlação com a geometria real do segundo conjunto.

Reduzindo o número de épocas para 200, as Figuras 41 e 42 mostram geometrias falsas

com maior correlação com a geometria real do primeiro conjunto e menor correlação com

a geometria real do segundo conjunto.
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Figura 39: Resultado com maior correlação, para 1º treinamento com 500 épocas, com a
geometria real do primeiro conjunto para teste. Fonte dos próprios autores.

Figura 40: Resultado com menor correlação, para 1º treinamento com 500 épocas, com a
geometria real do segundo conjunto para teste. Fonte dos próprios autores.

Figura 41: Resultado com maior correlação, para 1º treinamento com 200 épocas, com a
geometria real do primeiro conjunto para teste. Fonte dos próprios autores.

Figura 42: Resultado com menor correlação, para 1º treinamento com 200 épocas, com a
geometria real do segundo conjunto para teste. Fonte dos próprios autores.

Além desses resultados apresentados, outras geometrias constam no apêndice B.



69

9.3.2 Funções de erro

Em seguida, são calculadas as funções de erro – VFAE, MAE e MSE – comparando

as geometrias geradas com aquelas do dataset. Esse comparativo, mostrado na Figura 43,

é relativo às geometrias inseridas em cada mini batch estabelecido pelo batch size igual a

64. Ou seja, as 384 geometrias do dataset foram colocadas em 6 mini batches de tamanho

igual a 64, sendo comparadas às novas geometrias geradas também inseridas em 6 mini

batches.

Figura 43: Funções de erro com relação ao teste. Fonte dos próprios autores.

Por fim, as 384 novas geometrias foram geradas pela rede em 11 segundos. Vale

salientar que houve redução do número de geometrias geradas em relação ao número de

dados de teste inicial (400), pois o número de geometrias geradas depende do valor de

batch size. Para batch size igual 64, foram geradas 64 geometrias novas (falsas) em cada

um dos 6 mini batches dos dados de teste.
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10 DISCUSSÕES

10.1 Atendimento a requisitos

O presente trabalho atendeu aos requisitos de projeto seguindo a metodologia adotada.

Foram geradas 2.000 dados de estruturas para o dataset, compreendendo dados de

teste, treino e validação. Para isso, foram contabilizados cerca de 80 minutos, ou seja,

gerou-se uma estrutura a cada 2,4 segundos, variando a posição, direção e sentido dos três

carregamentos.

A geração do dataset e a implementação do modelo da rede foram feitas em Python,

baseando-se em códigos abertos e livre como pacotes Tensorflow e Topopt. Por um lado, a

seleção dos melhores hiperparâmetros demandou maior processamento, sendo necessário

obter a licença da plataforma Colab PRO para maior capacidade computacional. Por

outro lado, a versão gratuita do Colab é suficiente para realizar apenas um treinamento

da rede uma vez que também disponibiliza a paralelização de processos com GPU.

Foram geradas geometrias com topologias otimizadas a partir de um aprendizado

profundo pertencente ao estudo de Inteligência Artificial (IA). Dessa forma, o modelo

da metodologia adotada é uma cGAN com 6 canais condicionais provenientes do dataset

constrúıdo. Foram utilizados seis canais condicionais para a entrada da rede, correspon-

dendo a matrizes de dimensão 64x128 e a matriz 64x128 referente à geometria otimizada

proveniente do dataset.

Com a rede treinada, a discriminadora da cGAN é dispensada, enquanto a geradora

forma novas geometrias otimizadas a partir dos dados de teste. Assim, foram geradas

384 geometrias em 11 segundos, cumprindo o requisito de sáıda da rede em menos de 30

segundos por estrutura. Com isso, foram calculadas as funções de erro que apresentaram

uma somatória em torno de 2% para VFAE, 1,25% para MSE e menos de 0,5% para MAE.

Assim as funções de erro revelam que foi cumprido o requisito de erro menor que 5%.

Embora os requisitos de projeto tenham sido cumpridos, pode-se analisar as geome-
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trias geradas topologicamente otimizadas para entender quais variáveis influenciaram para

os resultados.

10.2 Geometrias geradas

Um primeiro ponto a ser destacado é que a rede foi treinada a partir de um data-

set limitado à variação de três carregamentos com relação à posição, direção e sentido.

Assim, as geometrias otimizadas do dataset possuem as mesmas condições de contorno

iniciais sendo uma viga bi-apoiada nas extremidades e valor de fração de volume constante

igual a 0,2. Com isso, a não variação de alguns dados contribui para o aprendizado da

rede. Mesmo assim, a rede aprendeu a gerar geometrias a partir de dados mais simples

relacionados aos carregamentos, mas também a partir de estados de tensões que possuem

elevada variabilidade.

Em seguida, pode-se elencar alguns fatores que prejudicaram o aprendizado da rede,

fornecendo imagens com geometrias distantes das geometrias do dataset.

Primeiramente, quando a geometria otimizada do dataset apresenta segmentos es-

treitos, a geometria falsa gerada possui descontinuidades, inclusive não sendo detectado

a presença de material na maior parte do domı́nio 64x128. Mesmo, assim a função de

erro VFAE apresentou mı́nima discrepância. Com isso, verifica-se que a rede aprendeu

a reduzir a função de erro relativo à fração de volume da geometria otimizada, concen-

trando material em uma região que possui maior proximidade de segmentos mais espessos,

conforme pode ser observado nas Figuras 40 e 42.

Para os treinamentos elucidados no caṕıtulo de resultados, destacam-se alguns dos

hiperparâmetros que obtiveram melhor aprendizado e de forma mais eficiente. Compa-

rativamente, o 1º treinamento com número de épocas igual a 200 e batch size de 64

apresentou convergências para aprendizado tanto da discriminadora quanto da geradora.

Tendo como base essa rede treinada, os resultados podem ser melhorados a partir da

variação de outros hiperparâmetros, além da tentativa de aumentar o número de dados

do dataset.

Alternativamente, em razão da alta incidência de imagens borradas, a geradora pode

ser restringida para modelar geometrias com segmentos estreitos. Para isso ao invés de

criar um dataset com valores aleatórios para as informações dos carregamentos, uma

estratégia é gerar um dataset com carregamentos em posições distantes, visando produzir

geometrias otimizadas com segmentos estreitos como pode demonstrado pelo segundo
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conjunto para teste com quatro dos seus canais condicionais mostrados na Figura 38.

Além disso, pode-se considerar carregamentos incidentes em uma mesma posição, o que

foi desprezado pelo dataset constrúıdo.



PARTE III

CONCLUSÃO
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11 OBJETIVOS ALCANÇADOS

O presente trabalho atingiu aos requisitos propostos trazendo uma rede funcional

no que diz respeito à geração rápida de estruturas com topologia otimizada através de

software open source. Além disso, as estruturas testadas se mostraram com sáıdas muito

similares ao resultado obtido de otimização por metodologias tradicionais.

De modo geral, o trabalho supriu determinada carência com relação à pesquisa ci-

ent́ıfica, dado que os autores não participaram, por exemplo, de uma iniciação cient́ıfica

que se diferencia de trabalhos realizados durante a graduação.

Além disso, o trabalho em equipe dos autores, que já haviam trabalhado juntos em

grupos de extensão, possibilitou a entrega de um longo trabalho iniciado em 2020, já com

orientação da Profa. Larissa.

Por meio deste trabalho, os autores lidaram com dificuldades de acesso a tecnologias

de códigos não abertos, o que foi uma motivação para implementar uma metodologia de

Inteligência Artificial.
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12 PRÓXIMOS PASSOS

Com objetivo de produzir melhores resultados através da metodologia abordada pelo

presente trabalho, uma primeira estratégia mencionada é aumentar o número de dados do

dataset. Durante a geração do dataset constrúıdo com 2.000 a partir de dados aleatórios,

havia a possibilidade de unir diferentes datasets para produzir um dataset ainda maior.

No entanto, há uma limitação de memória para produção de arquivos grandes (maior que

1 GB), o que pode ser lidado nessa primeira estratégia.

Em seguida, podemos desenvolver, de forma mais aprofundada, parâmetros f́ısicos

para treinamento da rede, uma vez que foram considerados unitários inúmeras constantes

f́ısicas.

Com isso em mãos, as geometrias geradas pela rede cGAN podem ser validadas em

um software comercial como o Abaqus.

Por fim, incrementando a complexidade do treinamento da rede, uma segunda es-

tratégia é ampliar a variabilidade do dataset para abranger a variação de fração de volume,

condições de contorno, materiais, aumento do domı́nio, além de geometrias 3D.

Assim, o presente trabalho apresenta uma solução de otimização topológica podendo,

através das estratégias mencionadas, ter uma aplicação concreta.
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<https://www.sciencedirect.com/science/article/pii/S001044852030018X>.

[9] CAVAZZUTI, M. et al. High performance automotive chassis design: A topology
optimization based approach. Structural and Multidisciplinary Optimization, v. 44, p.
45–56, 01 2011.

[10] ZHANG, W.; ZHU, J.; GAO, T. Topology Optimization in Engineering Structure
Design. [S.l.: s.n.], 2016. 1-294 p.



77

[11] DONOFRIO, M. Topology optimization and advanced manufacturing as
a means for the design of sustainable building components. Procedia En-
gineering, v. 145, p. 638–645, 2016. ISSN 1877-7058. ICSDEC 2016 – In-
tegrating Data Science, Construction and Sustainability. Dispońıvel em:
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Dispońıvel em: <https://arxiv.org/abs/1709.09578>.

[22] RAWAT, S.; SHEN, M. H. H. A novel topology design approach using
an integrated deep learning network architecture. 2019. Dispońıvel em:
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APÊNDICE A – PARÂMETROS DO

SETUP

Tabela 1: Definição dos parâmetros em Setup

Variável Valor Descrição

batch size 8 Tamanho do batch

input c dim 2 Número de canais de entrada

output c dim 1 Número de canais de sáıda

condition dim 6 Número de canais condicionais

overlap dim 2 Número de canais repetidos

L1 lambda 10000 Peso do termo L1 na função objetivo

L2 lambda 1 Peso do termo L2 na função objetivo

epoch 201 Total de épocas

dataset train valid /train.npy Caminho dos dados de treino + validação

dataset test /test.npy Caminho dos dados de teste

input size 128x64 Dimens. da imagem de entrada (largura x altura)

output size 128x64 Dimens. da imagem de sáıda (largura x altura)

gf dim 128 Parâmetro de camadas da geradora

df dim 32 Parâmetro de camadas da discriminadora

lr 0.001 Taxa de aprendizado inicial do otimizador Adam

beta1 0.5 Termo momentum do otimizado Adam
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APÊNDICE B – GEOMETRIAS

Figura 44: Geometrias otimizadas (dado falso) pela rede com maior correlação com a
geometria do dataset (dado verdadeiro), sendo uma geometria selecionada em cada um
dos 6 mini batche para teste. Fonte dos próprios autores.
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Figura 45: Geometrias otimizadas (dado falso) pela rede com menor correlação com a
geometria do dataset (dado verdadeiro), sendo uma geometria selecionada em cada um
dos 6 mini batches para teste. Fonte dos próprios autores.
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